Philipp Süss

Learn More
PURPOSE To provide a mathematical approach for quantifying the tradeoff between intensity-modulated radiotherapy (IMRT) complexity and plan quality. METHODS AND MATERIALS We solve a multi-objective program that includes IMRT complexity, measured as the number of monitor units (MU) needed to deliver the plan using a multileaf collimator, as an objective.(More)
Common problems in inverse radiotherapy planning are localized dose insufficiencies like hot spots in organs at risk or cold spots inside targets. These are hard to correct since the optimization is based on global evaluations like maximum/minimum doses, equivalent uniform doses or dose-volume constraints for whole structures. In this work, we present a new(More)
In the multi-criteria optimization approach to IMRT planning, a given dose distribution is evaluated by a number of convex objective functions that measure tumor coverage and sparing of the different organs at risk. Within this context optimizing the intensity profiles for any fixed set of beams yields a convex Pareto set in the objective space. However, if(More)
Image-guided radiofrequency ablation (RFA) is a broadly used minimally invasive method for the thermal destruction of focal liver malignancies using needle-shaped instruments. The established planning workflow is based on examination of 2D slices and manual definition of the access path. During that process, multiple criteria for all possible trajectories(More)
In inverse planning for intensity-modulated radiotherapy (IMRT), the fluence distribution of each treatment beam is usually calculated in an optimization process. The delivery of the resulting treatment plan using multileaf collimators (MLCs) is performed either in the step-and-shoot or sliding window technique. For step-and-shoot delivery, the arbitrary(More)
A wealth of problems occurring naturally in the applied sciences can be reformulated as optimization tasks whose argument is constrained to the solution set of a system of linear equations. Solving these efficiently typically requires computation of feasible descent directions and proper step sizes the quality of which depends largely on conditioning of the(More)
Multicriteria optimization problems occur in many real life applications, for example in cancer radiotherapy treatment and in particular in intensity modulated radiation therapy (IMRT). In this work we focus on optimization problems with multiple objectives that are ranked according to their importance. We solve these problems numerically by combining(More)
In intensity-modulated radiation therapy (IMRT), 3D in-room imaging data is typically utilized for accurate patient alignment on the basis of anatomical landmarks. In the presence of non-rigid anatomical changes, it is often not obvious which patient position is most suitable. Thus, dose-guided patient alignment is an interesting approach to use available(More)