Philipp Miermeister

Learn More
This paper introduces the CableRobot simulator, which was developed at the Max Planck Institute for Biological Cybernetics in cooperation with the Fraunhofer Institute for Manufacturing Engineering and Automation IPA. The simulator is a completely novel approach to the design of motion simulation platforms in so far as it uses cables and winches for(More)
In this paper we study if approximated linear models are accurate enough to predict the vibrations of a cable of a Cable-Driven Parallel Robot (CDPR) for different pretension levels. In two experiments we investigated the damping of a thick steel cable from the Cablerobot simulator [1] and measured the motion of the cable when a sinusoidal force is applied(More)
Bacterial adhesion and biofilm growth can cause severe biomaterial-related infections and failure of medical implants. To assess the antifouling properties of engineered coatings, advanced approaches are needed for in situ monitoring of bacterial viability and growth kinetics as the bacteria colonize a surface. Here, we present an optimized protocol for(More)
In this paper, the kinematics and dynamics modeling of the mechatronic model for a 6 DOF cabledriven parallel robot are covered and a real-time capable simulation model for such robots is derived. The governing equations of motion of the mobile platform are acquired using Newton-Euler formalism, furthermore, the pulley kinematics of the winches and a(More)
  • 1