Learn More
Osteoporosis is a frequent problem in disorders characterized by iron overload, such as the thalassemias and hereditary hemochromatosis. The exact role of iron in the development of osteoporosis in these disorders is not established. To define the effect of iron excess in bone, we generated an iron-overloaded mouse by injecting iron dextran at 2 doses into(More)
Gene transfer-based myeloprotection strategies against chemotherapy require the development of effective drug resistance genes or gene combinations. Our laboratory has previously generated drug-resistant mutants of dihydrofolate reductase (DHFR F/S) and thymidylate synthase (TS G52S) for myeloprotection against methotrexate (MTX) and 5-fluorouracil (5-FU),(More)
Drug resistance is often a limiting factor in successful chemotherapy. Our laboratory has been interested in studying mechanisms of resistance to drugs that are targeted to the thymidylate biosynthesis pathway especially those that target thymidylate synthase (TS) and dihydrofolate reductase (DHFR). We have used leukemia as a model system to study(More)
Distinct signals that guide migration of mesenchymal stem cells (MSCs) to specific in vivo targets remain unknown. We have used rat MSCs to investigate the molecular mechanisms involved in such migration. Rat MSCs were shown to migrate to tumor microenvironment in vivo, and an in vitro migration assay was used under defined conditions to permit further(More)
Musculoskeletal injuries are the most common reason for operative procedures in severely injured patients and are major determinants of functional outcomes. In this paper, we summarise advances and future directions for management of multiply injured patients with major musculoskeletal trauma. Improved understanding of fracture healing has created new(More)
The nuclear enzyme poly(ADP-ribosyl) transferase (pADPRT) catalyzes the formation of poly(ADP-ribose) from NAD+. Several nuclear proteins and pADPRT itself are targets for the modification by poly(ADP-ribosyl)ation. It is demonstrated here that poly(ADP-ribose) or pADPRT automodified with poly(ADP-ribose) interacts noncovalently with the 20S proteasome in(More)
Poly(ADP-ribosyl)transferase (pADPRT) is a nuclear protein which catalyzes the polymerization of ADP-ribose using NAD+ as substrate, as well as the transfer of ADP-ribose polymers to itself and other protein acceptors. The catalytic activity of pADPRT strictly depends on the presence of DNA single-strand breaks. In this report, protein-protein interaction(More)
Physiological disturbances, including temporary hypoxia, are expected to drive angiogenesis during bone repair. Evidence suggests that the angiogenic ligand vascular endothelial growth factor (VEGF)-A plays an important role in this process. We characterized the expression of two receptors that are essential for mediating VEGF signaling, VEGFR1/Flt-1 and(More)
PURPOSE Integrin α(v)β(3) plays an important role in tumor angiogenesis, growth, and metastasis. We have tested a targeted probe to visualize integrin receptor expression in glioblastomas using near-infrared fluorescent (NIRF) imaging. EXPERIMENTAL DESIGN A transgenic glioblastoma mouse model (RCAS-PDGF-driven/tv-a glioblastoma, which mimics the(More)
Multimodality imaging is increasingly being used in molecular-genetic studies in small animals. The coupling of nuclear and optical reporter genes represents the beginning of a far wider application of this technology. Optical imaging and optical reporter systems are cost-effective and time-efficient, they require less resources and space than PET or MRI,(More)