Philipp Krähenbühl

Learn More
where the partition function is defined as Z = ∑ x P̃ (x). Let’s define an approximate distribution Q(X) = ∏ iQi(Xi) as a product of independent marginals Qi(Xi) over each variable in the CRF. For notational clarity we use Qi(Xi) to denote the marginal over variable Xi, rather than the more commonly used Q(Xi). The mean field approximation models a(More)
Saliency estimation has become a valuable tool in image processing. Yet, existing approaches exhibit considerable variation in methodology, and it is often difficult to attribute improvements in result quality to specific algorithm properties. In this paper we reconsider some of the design choices of previous methods and propose a conceptually clear and(More)
We present an approach for identifying a set of candidate objects in a given image. This set of candidates can be used for object recognition, segmentation, and other object-based image parsing tasks. To generate the proposals, we identify critical level sets in geodesic distance transforms computed for seeds placed in the image. The seeds are placed by(More)
We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both(More)
We present an approach to learn a dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a Convolutional Neural Network (CNN) classifier. We propose Constrained CNN (CCNN), a method which uses a novel loss function to optimize for any set of linear constraints on the output space (i.e. predicted(More)
Dense random fields are models in which all pairs of variables are directly connected by pairwise potentials. It has recently been shown that mean field inference in dense random fields can be performed efficiently and that these models enable significant accuracy gains in computer vision applications. However, parameter estimation for dense random fields(More)
We present swps3, a vectorized implementation of the Smith-Waterman local alignment algorithm optimized for both the Cell/BE and ×86 architectures. The paper describes swps3 and compares its performances with several other implementations. Our benchmarking results show that swps3 is currently the fastest implementation of a vectorized Smith-Waterman on the(More)
Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to “fall off” the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold directly(More)
We present an approach for highly accurate bottom-up object segmentation. Given an image, the approach rapidly generates a set of regions that delineate candidate objects in the image. The key idea is to train an ensemble of figure-ground segmentation models. The ensemble is trained jointly, enabling individual models to specialize and complement each(More)