Learn More
Saliency estimation has become a valuable tool in image processing. Yet, existing approaches exhibit considerable variation in methodology, and it is often difficult to attribute improvements in result quality to specific algorithm properties. In this paper we reconsider some of the design choices of previous methods and propose a conceptually clear and(More)
We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both(More)
We present an approach to learn a dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a Convolutional Neural Network (CNN) classifier. We propose Constrained CNN (CCNN), a method which uses a novel loss function to optimize for any set of linear constraints on the output space (i.e. predicted(More)
Dense random fields are models in which all pairs of variables are directly connected by pairwise potentials. It has recently been shown that mean field inference in dense random fields can be performed efficiently and that these models enable significant accuracy gains in computer vision applications. However , parameter estimation for dense random fields(More)
Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to " fall off " the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold directly(More)
We propose a data-driven approach for intrinsic image decomposition, which is the process of inferring the confounding factors of reflectance and shading in an image. We pose this as a two-stage learning problem. First, we train a model to predict relative reflectance ordering between image patches ('brighter', 'darker', 'same') from large-scale human(More)
We present swps3, a vectorized implementation of the Smith-Waterman local alignment algorithm optimized for both the Cell/BE and ×86 architectures. The paper describes swps3 and compares its performances with several other implementations. Our benchmarking results show that swps3 is currently the fastest implementation of a vectorized Smith-Waterman on the(More)