Philipp C Daiber

Learn More
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca(2+) for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular(More)
The chemosensory neuroepithelia of the vertebrate olfactory system share a life-long ability to regenerate. Novel neurons proliferate from basal stem cells that continuously replace old or damaged sensory neurons. The sensory neurons of the mouse and rat olfactory system specifically express bestrophin 2, a member of the bestrophin family of(More)
The mammalian olfactory epithelium contains olfactory receptor neurons and trigeminal sensory endings. The former mediate odor detection, the latter the detection of irritants. The two apparently parallel chemosensory systems are in reality interdependent in various well-documented ways. Psychophysical studies have shown that virtually all odorants can act(More)
Chemosensation in the mammalian nose comprises detection of odorants, irritants and pheromones. While the traditional view assigned one distinct sub-system to each stimulus type, recent research has produced a more complex picture. Odorants are not only detected by olfactory sensory neurons but also by the trigeminal system. Irritants, in turn, may have a(More)
  • 1