Philipp Boehm-Sturm

Learn More
Noninvasive in vivo cell tracking is crucial to fully understand the function of mobile and/or transplanted cells, particularly immune cells and cellular therapeutics. (19)F MRI for cell tracking has several advantages; chief among them are its noninvasive nature which allows longitudinal data acquisition, use of a stable, non-radioactive isotope permitting(More)
PURPOSE Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. EXPERIMENTAL DESIGN We established an in vivo magnetic resonance imaging (MRI) approach that allows(More)
Neural stem cells (NSCs) have attracted major research interest due to their potential use in cell replacement therapy. In patients, human cells are the preferred choice, one source of human NSCs being the brain of fetuses. The aims of the present study were to explore the long-term differentiation, mobility and viability of NSCs derived from the human(More)
Activation of the endothelium is a pivotal first step for leukocyte migration into the diseased brain. Consequently, imaging this activation process is highly desirable. We synthesized carbohydrate-functionalized magnetic nanoparticles that bind specifically to the endothelial transmembrane inflammatory proteins E and P selectin. Magnetic resonance imaging(More)
Angiogenesis is a key event in the progression of glioblastomas (GBM). Our goal was to measure different anatomical and physiological parameters of GBM vessels using steady-state contrast-enhanced magnetic resonance imaging (SSCE-MRI), together with the assessment of biochemical parameters on GBM proliferation and angiogenesis using [11C]methyl-L-methionine(More)
BACKGROUND Magnetic resonance imaging (MRI) is a promising tool for monitoring stem cell-based therapy. Conventionally, cells loaded with ironoxide nanoparticles appear hypointense on MR images. However, the contrast generated by ironoxide labeled cells is neither specific due to ambiguous background nor quantitative. A strategy to overcome these drawbacks(More)
Neural stem cell implantations have been extensively investigated for treatment of brain diseases such as stroke. In order to follow the localization and functional status of cells after implantation noninvasive imaging is essential. Therefore, we developed a comprehensive multi-modality platform for in vivo imaging of graft localization, density, and(More)
During stroke, the reduction of blood flow leads to undersupply of oxygen and nutrients and, finally, to cell death, but also to upregulation of pro-angiogenic molecules and vascular remodeling. However, the temporal profile of vascular changes after stroke is still poorly understood. Here, we optimized steady-state contrast-enhanced magnetic resonance(More)
Folates are B-vitamins that are vital for normal brain function. Deficiencies in folates either genetic (methylenetetrahydrofolate reductase, MTHFR) or dietary intake of folic acid result in elevated levels of homocysteine. Clinical studies have shown that elevated levels of homocysteine (Hcy) may be associated with the development of dementia, however this(More)
Responsive or smart magnetic resonance imaging (MRI) contrast agents are molecular sensors that alter the MRI signal upon changes in a particular parameter in their microenvironment. Consequently, they could be exploited for visualization of various biochemical events that take place at molecular and cellular levels. In this study, a set of dual-frequency(More)