Philip Sawle

Learn More
The enzyme heme oxygenase-1 (HO-1) is a cytoprotective and anti-inflammatory protein that degrades heme to produce biliverdin/bilirubin, ferrous iron and carbon monoxide (CO). The anti-inflammatory properties of HO-1 are related to inhibition of adhesion molecule expression and reduction of oxidative stress, while exogenous CO gas treatment decreases the(More)
Carbon monoxide (CO) is emerging as an important and versatile mediator of physiological processes to the extent that treatment of animals with exogenous CO gas has beneficial effects in a range of vascular- and inflammatory-related disease models. The recent discovery that certain transition metal carbonyls function as CO-releasing molecules (CO-RMs) in(More)
Chalcones are naturally occurring flavonoids composed of two aromatic rings connected by a three-carbon unit forming an alpha-beta unsaturated carbonyl group. They are pharmacologically relevant because of their ability to exert anticarcinogenic, antimicrobial, and anti-inflammatory activities. Recent evidence indicates that the bioactivity of(More)
BACKGROUND Induction of heme oxygenase (HO)-1 expression protects transplanted organs from humoral rejection and ischemia-reperfusion injury, but induction in recipient immune cells also has direct immunomodulatory effects. Although many studies have examined the impact of HO-1 after transplantation, it is still unclear whether HO-1 expression solely in the(More)
OBJECTIVE Intracerebral hemorrhage is accompanied by a pronounced inflammatory response that mediates brain damage but is also essential for the tissue reparative process. We assessed the effect of CORM-3, a water-soluble carbon monoxide-releasing molecule possessing anti-inflammatory properties, on inflammation and brain injury after intracerebral(More)
In this study, we investigated the inflammatory response to hemorrhagic stroke (HS) as the main mechanism of brain functional recovery. Sprague-Dawley rats (n = 24) underwent surgery with sterile saline (control group, n = 12) and collagenase IV-S (stroke group, n = 12) being injected into the right striatum. White blood cell analysis, histological and(More)
Carbon monoxide-releasing molecules (CO-RMs) are compounds capable of delivering controlled amounts of CO within a cellular environment. Ruthenium-based carbonyls [tricarbonyldichloro ruthenium(II) dimer and tricarbonylchloro-(glycinato)ruthenium(II)] and boronacorbonates (sodium boranocarbonate) have been shown to promote vasodilatory, cardioprotective,(More)
[Mn(CO)(4){S(2)CNMe(CH(2)CO(2)H)}], 1, is shown to be a CO releasing molecule providing at least three moles CO per mole of compound. The mechanism of CO loss is dissociative and reversible and was investigated using Gaussian 09 calculations. The reversible binding of CO results in a relatively stable solution of the compound, while in the presence of a CO(More)
The disrupted metabolism of homocysteine (Hcy) causes hyperhomocysteinemia, a condition associated with the impairment of nitric oxide (NO) bio-availability, tissue hypoxia and increased risk of vascular disease. Here, we examined how Hcy modulates the induction of the stress protein haem oxygenase-1 (HO-1) evoked by NO releasing agents and hypoxia in(More)
An evaluation of the CO releasing ability of iron(II) and molybdenum(II) complexes has facilitated the discovery of the most rapid CO releaser, namely [Mo(CO)(3)(eta(5)-C(5)H(5))(eta(1)-{O}-C{=O}-O-CMe=CH-COMe=CBr)]BF(4) (CORM-F10), reported to date. The rate of CO release is related to the overall solution phase stability of the transition metal carbonyl(More)