Philip M. Meneely

Learn More
The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic(More)
The DPY-26 protein is required in the nematode Caenorhabditis elegans for X-chromosome dosage compensation as well as for proper meiotic chromosome segregation. DPY-26 was shown to mediate both processes through its association with chromosomes. In somatic cells, DPY-26 associates specifically with hermaphrodite X chromosomes to reduce their transcript(More)
Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has(More)
Twenty-one X-linked recessive lethal and sterile mutations balanced by an unlinked X-chromosome duplication have been identified following EMS treatment of the small nematode, Caenorhabditis elegans. The mutations have been assigned by complementation analysis to 14 genes, four of which have more than one mutant allele. Four mutants, all alleles, are(More)
Mutations in the him-5 gene in Caenorhabditis elegans strongly reduce the frequency of crossovers on the X chromosome, with lesser effects on the autosomes. him-5 mutants also show a change in crossover distribution on both the X and autosomes. These phenotypes are accompanied by a delayed entry into pachytene and premature desynapsis of the X chromosome.(More)
Within a set of five separable molecular forms of acetylcholinesterase found in the nematode Caenorhabditis elegans, previously reported differences in kinetic properties identify two classes, A and B, likely to be under separate genetic control. Using differences between these classes in sensitivity to inactivation by sodium deoxycholate, a screening(More)
We have expanded our collection of recessive lethal and sterile mutants in the region of the X chromosome balanced by mnDp1(X;V), about 15% of the X linkage map, to a total of 54 mutants. The mutations have been mapped with respect to 20 overlapping deficiencies and five X duplications, and they have been assigned to 24 genes by complementation testing.(More)
The nematode Caenorhabditis elegans appears to be a useful model for studying the action of volatile anesthetics. A mutant strain that is hypersensitive to the widely used anesthetic halothane was described earlier. The mutation is now shown to be an allele of unc-79. Other alleles of unc-79 are also associated with hypersensitivity to halothane. A strain(More)
Recessive mutations in three autosomal genes, him-1, him-5 and him-8, cause high levels of X chromosome nondisjunction in hermaphrodites of Caenorhabditis elegans, with no comparable effect on autosomal disjunction. Each of the mutants has reduced levels of X chromosome recombination, correlating with the increase in nondisjunction. However, normal or(More)
In both Drosophila melanogaster and Caenorhabditis elegans somatic sex determination, germline sex determination, and dosage compensation are controlled by means of a chromosomal signal known as the X:A ratio. A variety of mechanisms are used for establishing and implementing the chromosomal signal, and these do not appear to be similar in the two species.(More)