Learn More
AIMS Thrombospondin-1 (TSP1), via its necessary receptor CD47, inhibits nitric oxide (NO)-stimulated soluble guanylate cyclase activation in vascular smooth muscle cells, and TSP1-null mice have increased shear-dependent blood flow compared with wild-type mice. Yet, the endothelial basement membrane should in theory function as a barrier to diffusion of(More)
Shear stress stimulates NO production involving the Ca2+-independent mechanisms in endothelial cells. We have shown that exposure of bovine aortic endothelial cells (BAEC) to shear stress stimulates phosphorylation of eNOS at S635 and S1179 by the protein kinase A- (PKA-) dependent mechanisms. We examined whether phosphorylation of S635 of eNOS induced by(More)
We examined the influence of individual serine phosphorylation sites in endothelial nitric-oxide synthase (eNOS) on basal and stimulated NO release, cooperative phosphorylation, and co-association with hsp90 and Akt. Mutation of the serine phosphorylation sites 116, 617, and 1179 to alanines affected the phospho-state of at least one other site,(More)
In endothelia, NO is synthesized by endothelial NO synthase (eNOS), which is negatively regulated by caveolin-1 (Cav-1), the primary coat protein of caveolae. We show that delivery of Cav-1 amino acids 82-101 (Cav) fused to an internalization sequence from Antennapedia (AP) blocks NO release in vitro and inflammation and tumor angiogenesis in vivo. To(More)
Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable,(More)
BACKGROUND Pulmonary arterial hypertension is a progressive proliferative vasculopathy of the small pulmonary arteries that is characterized by a primary failure of the endothelial nitric oxide and prostacyclin vasodilator pathways, coupled with dysregulated cellular proliferation. We have recently discovered that the endogenous anion salt nitrite is(More)
Activation of bone morphogenetic protein (BMP) receptor II (BMPRII) promotes pulmonary artery endothelial cell (PAEC) survival, proliferation, and migration. Mutations to BMPRII are associated with the development of pulmonary arterial hypertension (PAH). Endothelial dysfunction, including decreased endothelial nitric-oxide synthase (eNOS) activity and loss(More)
BACKGROUND Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension. (More)
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS(More)
The functions of caveolae and/or caveolins in intact animals are beginning to be explored. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in several postnatal vascular paradigms. First, increasing levels of Cav-1 do not increase caveolae number in the endothelium in vivo.(More)