Learn More
1. Encoding temporal features of the acoustic waveform is an important attribute of the auditory system. Auditory nerve (AN) fibers synchronize or phase-lock to low-frequency tones and transmit this temporal information to cells in the anteroventral cochlear nucleus (AVCN). Phase-locking in the AVCN is usually reported to be similar to or weaker than in the(More)
Temporal information in the responses of auditory neurons to sustained sounds has been studied mostly with periodic stimuli, using measures that are based on Fourier analysis. Less information is available on temporal aspects of responses to nonperiodic wideband sounds. We recorded responses to a reference Gaussian noise and its polarity-inverted version in(More)
1. Interaural level differences (ILDs), created by the head and pinna, have long been known to be the dominant acoustic cue for azimuthal localization of high-frequency tones. However, psychophysical experiments have demonstrated that human subjects can also lateralize complex high-frequency sounds on the basis of interaural time differences (ITDs) of the(More)
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of(More)
Sinusoidally amplitude-modulated (AM) tones are frequently used in psychophysical and physiological studies, yet a comprehensive study on the coding of AM tones in the auditory nerve is lacking. AM responses of single auditory-nerve fibers of the cat are studied, systematically varying modulation depth, frequency, and sound level. Synchrony-level functions(More)
Amplitude modulation (AM) is a temporal feature of most natural acoustic signals. A long psychophysical tradition has shown that AM is important in a variety of perceptual tasks, over a range of time scales. Technical possibilities in stimulus synthesis have reinvigorated this field and brought the modulation dimension back into focus. We address the(More)
Bushy cells in the anteroventral cochlear nucleus (AVCN) receive their principal excitatory input from the auditory nerve and are the primary source of excitatory input to more centrally located brainstem auditory nuclei. Despite this pivotal position in the auditory pathway, details of the basic physiological information being carried by axons of these(More)
To localize sounds in space, humans heavily depend on minute interaural time differences (ITDs) generated by path-length differences to the two ears. Physiological studies of ITD sensitivity have mostly used deterministic, periodic sounds, in which either the waveform fine structure or a sinusoidal envelope is delayed interaurally. For natural broadband(More)
1. Discharges of neurons in the peripheral auditory system contain information about the temporal features of acoustic stimuli. Phase-locking of neurons in the anteroventral cochlear nucleus (AVCN) is usually reported to be less robust than in auditory nerve (AN) fibers, which provide their major input. In a companion paper we reported that some cells in(More)
Belgium from their monaural, excitatory afferents. Third, the mon-aural channels project with ladder-like branching pat-† Department of Anatomy ‡ Department of Physiology terns running in opposite directions to the tertiary cells. In Figure 1A, the length of the ipsi-and contralateral University of Wisconsin Madison, Wisconsin 53706 inputs to the third(More)