Learn More
Disulfide bonds have been generally considered to be either structural or catalytic. Structural bonds stabilize a protein, while catalytic bonds mediate thiol-disulfide interchange reactions in substrate proteins. There is emerging evidence for a third type of disulfide bond that can control protein function by triggering a conformational change when it(More)
Morphologic assessment of lung tumors is informative but insufficient to adequately predict patient outcome. We previously identified transcriptional profiles that predict patient survival, and here we identify proteins associated with patient survival in lung adenocarcinoma. A total of 682 individual protein spots were quantified in 90 lung adenocarcinomas(More)
The prevailing view is that disulfide bonds have been added during evolution to enhance the stability of proteins that function in a fluctuating cellular environment. However, recent evidence indicates that disulfide bonds can be more than inert structural motifs. The function of some secreted soluble proteins and cell-surface receptors is controlled by(More)
Arsenic is a semi-metal or metalloid with two biologically important oxidation states, As(III) and As(V). As(III), in particular, reacts with closely spaced protein thiols, forming stable cyclic dithioarsinite complexes in which both sulfur atoms are bound to arsenic. It is this reaction that is mostly responsible for arsenics cytotoxicity. Arsenic(More)
Cell-surface tissue factor (TF) binds the serine protease factor VIIa to activate coagulation or, alternatively, to trigger signaling through the G protein-coupled, protease-activated receptor 2 (PAR2) relevant to inflammation and angiogenesis. Here we demonstrate that TF.VIIa-mediated coagulation and cell signaling involve distinct cellular pools of TF.(More)
Protein disulfide isomerase (PDI) facilitates proper folding and disulfide bonding of nascent proteins in the endoplasmic reticulum and is secreted by cells and associates with the cell surface. We examined the consequence of over- or underexpression of PDI in HT1080 fibrosarcoma cells for the redox state of cell-surface protein thiols/disulfides.(More)
BACKGROUND The synthetic tripeptide arsenical 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide (GSAO) is an angiogenesis inhibitor that targets the mitochondria of actively dividing but not quiescent endothelial cells, arresting their proliferation and causing apoptosis. Normal endothelial cells are much more sensitive to GSAO than tumor cells. To(More)
The synthetic tripeptide arsenical 4-(N-(S-glutathionylacetyl)amino)p-phenylarsenoxide (p-GSAO) is an angiogenesis inhibitor that inactivates mitochondrial adenine nucleotide translocase (ANT) by cross-linking a pair of matrix-facing cysteine residues. This causes an increase in superoxide levels and proliferation arrest of endothelial cells followed by(More)
Thrombospondin 1 was recently shown to bind to and inhibit the activity of neutrophil elastase (Hogg, P. J., Owensby, D. A., Mosher, D. F., Misenheimer, T. M., and Chesterman, C. N. (1993) J. Biol. Chem. 268, 7139-7146). This finding led us to question whether thrombospondin 1 also binds and inhibits the other major serine proteinase of neutrophils,(More)
BACKGROUND Allosteric disulfide bonds regulate protein function when they break and/or form. They typically have a -RHStaple configuration, which is defined by the sign of the five chi angles that make up the disulfide bond. RESULTS All disulfides in NMR and X-ray protein structures as well as in refined structure datasets were compared and contrasted for(More)