Learn More
L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBalpha)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells.(More)
Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5' AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the(More)
Acute exercise, like insulin, increases D-glucose uptake into rat hind limb muscles. Here we examine the distribution of the muscle glucose transporters GLUT-4 and GLUT-1 in plasma membrane and intracellular membrane fractions of skeletal muscle prepared from control, exercised, and acutely insulin-treated rats. Immunoblotting with an anti-GLUT-4 polyclonal(More)
The insulin-regulated glucose transporter (GLUT4) translocates to the plasma membrane in response to insulin in order to facilitate the postprandial uptake of glucose into fat and muscle cells. While early insulin receptor signaling steps leading to this translocation are well defined, the integration of signaling and regulation of GLUT4 traffic remains(More)
OBJECTIVE Insulin resistance associates with chronic inflammation, and participatory elements of the immune system are emerging. We hypothesized that bacterial elements acting on distinct intracellular pattern recognition receptors of the innate immune system, such as bacterial peptidoglycan (PGN) acting on nucleotide oligomerization domain (NOD) proteins,(More)
The objectives of this study were 1) to evaluate glucose transport and its regulation by insulin in easily accessible human cells, 2) to investigate the glucose transporter isoforms involved, and 3) to establish whether a defect in glucose transport is associated with peripheral insulin resistance, which is common in insulin-dependent diabetes mellitus(More)
OBJECTIVE In obesity, immune cells infiltrate adipose tissue. Skeletal muscle is the major tissue of insulin-dependent glucose disposal, and indices of muscle inflammation arise during obesity, but whether and which immune cells increase in muscle remain unclear. METHODS Immune cell presence in quadriceps muscle of wild type mice fed high-fat diet (HFD)(More)
The GLUT3 facilitative glucose transporter protein was found to be expressed in rat L6 muscle cells. It was detected at both the myoblast and myotube stage. GLUT3 protein content per mg of total membrane protein increased significantly during L6 cell differentiation. Subcellular fractionation demonstrated that the GLUT3 protein was predominantly localized(More)
Skeletal muscle is the major site for dietary glucose disposal, taking up glucose via glucose transporter 4 (GLUT4). Although subcellular fractionation studies demonstrate that insulin increases GLUT4 density in sarcolemma and transverse tubules, fractionation cannot discern GLUT4 vesicle-membrane association from insertion and exofacial exposure. Clonal(More)
Obesity-associated low-grade inflammation in metabolically relevant tissues contributes to insulin resistance. We recently reported monocyte/macrophage infiltration in mouse and human skeletal muscles. However, the molecular triggers of this infiltration are unknown, and the role of muscle cells in this context is poorly understood. Animal studies are not(More)