Philip J. Batterham

Learn More
Insecticide resistance is one of the most widespread genetic changes caused by human activity, but we still understand little about the origins and spread of resistant alleles in global populations of insects. Here, via microarray analysis of all P450s in Drosophila melanogaster, we show that DDT-R, a gene conferring resistance to DDT, is associated with(More)
The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high(More)
Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single species(More)
Modifications of metabolic pathways are important in insecticide resistance evolution. Mutations leading to changes in expression levels or substrate specificities of cytochrome P450 (P450), glutathione-S-transferase (GST) and esterase genes have been linked to many cases of resistance with the responsible enzyme shown to utilize the insecticide as a(More)
In Drosophila melanogaster, the increased expression of Cyp6g1 results in resistance to chemically unrelated insecticides including DDT, neonicotinoids and insect growth regulator insecticides. To determine the insecticide resistance capacity of other D. melanogaster cytochrome P450s, we used the GAL4/UAS system to express individual P450s in the midgut,(More)
Defects in the mammalian Menkes and Wilson copper transporting P-type ATPases cause severe copper homeostasis disease phenotypes in humans. Here, we find that DmATP7, the sole Drosophila orthologue of the Menkes and Wilson genes, is vital for uptake of copper in vivo. Analysis of a DmATP7 loss-of-function allele shows that DmATP7 is essential in(More)
Mutations at the lozenge (lz) locus are pleiotropic, primarily affecting the sense organs for sight, smell and taste. To better understand the role that lz plays in the visual system, we investigated its complex genetics and the effect mutations have on the structure of the compound eye. Complementation analysis within the lz locus reveals two functional(More)
As classical phase II detoxification enzymes, glutathione S-transferases (GSTs) have been implicated in insecticide resistance and may have evolved in response to toxins in the niche-defining feeding substrates of Drosophila species. We have annotated the GST genes of the 12 Drosophila species with recently sequenced genomes and analyzed their molecular(More)
The Hsp90 chaperone buffers development against a wide range of morphological changes in many organisms and in Drosophila masks the effects of hidden genetic variation. Theory predicts that genetic and nongenetic buffering will share common mechanisms. For example, it is argued that Hsp90 genetic buffering evolved solely as a by-product of environmental(More)
Previous work on the lozenge (lz) gene complex of D. melanogaster has focused on the compound eye. Here we study the effects of 22 lz mutations on the antennal sensilla. The antenna of strong lz alleles is characterized by a lack of basiconic sensilla and by a significantly increased density of coeloconic sensilla. Intermediate alleles have few basiconic(More)