Philip I. Marcus

Learn More
Developmentally aged chicken embryo cells which hyperproduce interferon (IFN) when induced were used to quantify IFN production and its suppression by eight strains of type A influenza viruses (AIV). Over 90% of the IFN-inducing or IFN induction-suppressing activity of AIV populations resided in noninfectious particles. The IFN-inducer moiety of AIV appears(More)
Defective interfering (DI) particles of vesicular stomatitis virus which contain covalently linked complementary [+]message and [-]anti-message RNA as a single-stranded ribonucleoprotein complex within the particle, are extremely efficient inducers of interferon. A single particle can induce a quantum yield of interferon. A single molecule of(More)
A purine analogue, 2-aminopurine, reported to act as an inhibitor of protein kinase, selectively, reversibly and in a dose-dependent manner blocked a very early stage in interferon induction. With chick embryo cells and mouse L cells as hosts, and different viral inducers of interferon, maximal effects of 2-aminopurine were observed during the first 4 h of(More)
Chicken interferon-alpha administered perorally in drinking water acts on the oropharyngeal mucosal system as an adjuvant that causes chickens to rapidly seroconvert after natural infection by low-pathogenicity Influenza virus. These chickens, termed super sentinels, can serve as sensitive early detectors of clinically inapparent infections.
Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine(More)
  • 1