Learn More
  • Citation Sun, David R Xiaoli, Evan D Skillman, Dandan Hoffman, Jan F Mao, Leva Mcgarry +102 others
  • 2013
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract: Laser communication and ranging experiments were successfully(More)
Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We(More)
In eukaryotic cells, many motor proteins can move simultaneously on a single microtubule track. This leads to interesting collective phenomena such as jamming. Recently we reported [Phys. Rev. Lett. 95, 118101 (2005)] a lattice-gas model which describes traffic of unconventional (single-headed) kinesins KIF1A. Here we generalize this model, introducing an(More)
Bacterial growth environment strongly influences the efficacy of antibiotic treatment, with slow growth often being associated with decreased susceptibility. Yet in many cases, the connection between antibiotic susceptibility and pathogen physiology remains unclear. We show that for ribosome-targeting antibiotics acting on Escherichia coli, a complex(More)
Molecular motors are macromolecular complexes which use some form of input energy to perform mechanical work. The filamentary tracks, on which these motors move, are made of either proteins (e.g., microtubules) or nucleic acids (DNA or RNA). Often, many such motors move simultaneously on the same track and their collective properties have superficial(More)
We find a statistical mechanism that can adjust orientations of intracellular filaments to cell geometry in the absence of organizing centers. The effect is based on random and isotropic filament (de-)polymerization dynamics and is independent of filament interactions and explicit regulation. It can be understood by an analogy to electrostatics and appears(More)
We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters(More)
Drug gradients may give bacteria an evolutionary boost towards antibiotic resistance. Since Alexander Fleming discovered in 1928 that a substance secreted by a mold could kill bacteria, we have become used to the ease of administering cocktails of antibiotics to fight bacterial infections. However, the use and misuse of antibiotics in human medicine and(More)
We investigate the totally asymmetric simple exclusion process (TASEP) in the presence of a bottleneck, i.e. a sequence of consecutive defect sites with reduced hopping rate. The influence of such a bottleneck on the phase diagram is studied by computer simulations and a novel analytical approach. We find a clear dependence of the current and the properties(More)
  • 1