Learn More
We propose a cellular automaton model of solid tumour growth, in which each cell is equipped with a micro-environment response network. This network is modelled using a feed-forward artificial neural network, that takes environmental variables as an input and from these determines the cellular behaviour as the output. The response of the network is(More)
We present a cellular automaton model of clonal evolution in cancer aimed at investigating the emergence of the glycolytic phenotype. In the model each cell is equipped with a micro-environment response network that determines the behaviour or phenotype of the cell based on the local environment. The response network is modelled using a feed-forward neural(More)
Cancer is a complex, multiscale process, in which genetic mutations occurring at a subcellular level manifest themselves as functional and morphological changes at the cellular and tissue scale. The importance of interactions between tumour cells and their microenvironment is currently of great interest in experimental as well as computational modelling.(More)
The morphology of solid tumours is known to be affected by the background oxygen concentration of the tissue in which the tumour grows, and both computational and experimental studies have suggested that branched tumour morphology in low oxygen concentration is caused by diffusion-limited growth. In this paper we present a simple hybrid cellular automaton(More)
In this paper, we present a modelling framework for cellular evolution that is based on the notion that a cell's behaviour is driven by interactions with other cells and its immediate environment. We equip each cell with a phenotype that determines its behaviour and implement a decision mechanism to allow evolution of this phenotype. This decision mechanism(More)
Tumour invasion is driven by proliferation and importantly migration into the surrounding tissue. Cancer cell motility is also critical in the formation of metastases and is therefore a fundamental issue in cancer research. In this paper we investigate the emergence of cancer cell motility in an evolving tumour population using an individual-based modelling(More)
Two models of circulating tumour cell (CTC) dynamics have been proposed to explain the phenomenon of tumour 'self-seeding', whereby CTCs repopulate the primary tumour and accelerate growth: primary seeding, where cells from a primary tumour shed into the vasculature and return back to the primary themselves; and secondary seeding, where cells from the(More)
In this article, we will trace the historical development of tumor growth laws, which in a quantitative fashion describe the increase in tumor mass/volume over time. These models are usually formulated in terms of differential equations that relate the growth rate of the tumor to its current state and range from the simple one-parameter exponential growth(More)
In this review we summarize our recent efforts using mathematical modeling and computation to simulate cancer invasion, with a special emphasis on the tumor microenvironment. We consider cancer progression as a complex multiscale process and approach it with three single-cell-based mathematical models that examine the interactions between tumor(More)
Cell colonies of bacteria, tumor cells, and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which(More)