Philip E. Gill

Learn More
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are(More)
Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interior-point techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the(More)
This paper presents a fast algorithm for restoring video sequences. The proposed algorithm, as opposed to existing methods, does not consider video restoration as a sequence of image restoration problems. Rather, it treats a video sequence as a space-time volume and poses a space-time total variation regularization to enhance the smoothness of the solution.(More)
This paper describes two numerically stable methods for unconstrained optimization and their generalization when linear inequality constraints are added. The difference between the two methods is simply that one requires the Hessian matrix explicitly and the other does not. The methods are intimately based on the recurrence of matrix factorizations and are(More)
Recently, infeasibility issues in interior methods for nonconvex nonlinear programming have been studied. In particular, it has been shown how many line-search interior methods may converge to an infeasible point which is on the boundary of the feasible region with respect to the inequality constraints. The convergence is such that the search direction does(More)
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature(More)
Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has(More)