Philip D. Laible

Learn More
Integral membrane proteins (IMPs) are crucial biological components, mediating the transfer of material and information between cells and their environment. Many IMPs have proven to be difficult to isolate and study. High-resolution structural information on this class of proteins is limited, largely because of difficulties in generating soluble forms of(More)
When starting a protein-crystallization project, scientists are faced with several unknowns. Amongst them are these questions: (i) is the purity of the starting material sufficient? and (ii) which type of crystallization experiment is the most promising to conduct? The difficulty in purifying active membrane-protein samples for crystallization trials and(More)
This paper presents a plug-based microfluidic system to dispense nanoliter-volume plugs of Lipidic Cubic Phase (LCP) material and subsequently merge the LCP plugs with aqueous plugs. This system was validated by crystallizing membrane proteins in lipidic mesophases, including LCP. This system allows for accurate dispensing of LCP material in nanoliter(More)
The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent(More)
Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and(More)
  • 1