Philip D. Howes

Learn More
Semiconducting polymer nanospheres (SPNs) have been synthesized and encapsulated in phospholipid micelles by a solvent evaporation technique. Four different conjugated polymers were used, yielding aqueous dispersions of nanoparticles which emit across the visible spectrum. The synthesis was simple and easily reproducible, and the resultant nanoparticle(More)
Colloidal nanoparticle biosensors have received intense scientific attention and offer promising applications in both research and medicine. We review the state of the art in nanoparticle development, surface chemistry, and biosensing mechanisms, discussing how a range of technologies are contributing toward commercial and clinical translation. Recent(More)
The application of nanomaterials to detect disease biomarkers is giving rise to ultrasensitive assays, with scientists exploiting the many advantageous physical and chemical properties of nanomaterials. The fundamental basis of such work is to link unique phenomena that arise at the nanoscale to the presence of a specific analyte biomolecule, and to(More)
Hybrid nanoparticles which incorporate multiple functionalities, such as fluorescence and magnetism, can exhibit enhanced efficiency and versatility by performing several tasks in parallel. In this study, magnetic-fluorescent semiconductor polymer nanospheres (MF-SPNs) have been synthesized by encapsulation of hydrophobic conjugated polymers and iron oxide(More)
Aqueous dispersions of poly(ethylene glycol) (PEG) capped poly[2-(2',5'-bis(2''-ethylhexyloxy)phenyl)-1,4-phenylene vinylene] (BEHP-PPV) nanospheres with an average particle diameter of 13 nm have been synthesised by a miniemulsion route and used in simple intracellular imaging experiments.
Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current(More)
Combining technological developments such as nanomaterials, DNA nanotechnology, and functional enzymes has great potential to facilitate next generation high performance molecular diagnostic systems. In this work, we describe a microRNA (miRNA) detection assay that combines target recycling and isothermal amplification in an elegantly designed(More)
This paper presents the results of a multimodal study of oral perception conducted with a set of material samples made from metals, polymers and woods, in which both the somatosensory and taste factors were examined. A multidimensional scaling analysis coupled with subjective attribute ratings was performed to assess these factors both qualitatively and(More)
Designers increasingly have the opportunity to influence the development of materials as they emerge from the laboratory. In order for this to be successful, designers need to be able to communicate effectively with materials scientists so that materials can be developed with desired functionalities and properties. This paper reviews evidence in favour of(More)
Aqueous dispersions of fluorescent semiconducting polymer nanospheres (SPNs) have been synthesised by two methods; miniemulsion and micellar encapsulation. The colloidal and optical stability of SPNs synthesised by these two methods has been compared in order to assess the potential of these fluorescent nanoparticles for use in biological applications. The(More)
  • 1