Learn More
The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their(More)
Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine(More)
In the three decades since pluripotent mouse embryonic stem (ES) cells were first described they have been derived and maintained by using various empirical combinations of feeder cells, conditioned media, cytokines, growth factors, hormones, fetal calf serum, and serum extracts. Consequently ES-cell self-renewal is generally considered to be dependent on(More)
Background: Protein kinase B (PKB), also known as c-Akt, is activated rapidly when mammalian cells are stimulated with insulin and growth factors, and much of the current interest in this enzyme stems from the observation that it lies 'downstream' of phosphoinositide 3-kinase on intracellular signalling pathways. We recently showed that insulin or(More)
BACKGROUND Protein kinase B (PKB), also known as c-Akt, is activated rapidly when mammalian cells are stimulated with insulin and growth factors, and much of the current interest in this enzyme stems from the observation that it lies 'downstream' of phosphoinositide 3-kinase on intracellular signalling pathways. We recently showed that insulin or(More)
We have previously examined the specificities of 28 commercially available compounds, reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases [Davies, Reddy, Caivano and Cohen (2000) Biochem. J. 351, 95-105]. In the present study, we have extended this analysis to a further 14 compounds. Of these,(More)
MAPK-activated protein kinase-2 (MAPKAP kinase-2) is activated in vitro by the p42 and p44 isoforms of MAPK (p42/p44MAPK). In several cell lines, however, MAPKAP kinase-2 is activated by sodium arsenite, heat shock, or osmotic stress and not by agonists that activate p42/p44MAPK. We have identified a MAPK-like enzyme that acts as a MAPKAP kinase-2(More)
BACKGROUND Mitogen-activated protein (MAP) kinase is the central component of a signal transduction pathway that is activated by growth factors interacting with receptors that have protein tyrosine kinase activity. The stimulation of PC12 phaeochromocytoma cells with nerve growth factor leads to the sustained activation and nuclear translocation of the p42(More)
The neurotransmitter dopamine has been demonstrated by biochemical, histochemical and immunocytochemical techniques to be unevenly distributed in the mammalian central nervous system. DARPP-32 (dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32,000) is a neuronal phosphoprotein that displays a regional distribution in the mammalian(More)
Both MAP kinases and the protein kinase p74raf-1 are activated by many growth factors in a c-ras-dependent manner and by oncogenic p21ras. We were therefore interested in determining the relationship between MAP kinases and raf. The MAP kinase ERK2 is activated by expression of oncogenically activated raf, independently of cellular ras. Overexpressed(More)