Learn More
UNLABELLED The fast-setting reaction of 'fast-set' highly viscous glass-ionomer cements (GIC) may result in superior mechanical properties and good wear resistance as the material can theoretically achieve sufficient strength to resist masticatory loads within a shorter time. The aim of this study was to determine the hardness, strength (compressive and(More)
The in vitro behaviour and characteristics of plasma sprayed hydroxyapatite (HA) coatings using flame-spheroidized HA feedstock powder on titanium alloy (Ti-6Al-4V) substrates were investigated in a simulated physiological environment as an attempt to reflect the actual incubational condition of an implant in a human body system. As-sprayed and heat-treated(More)
The bioactivity of plasma-sprayed hydroxyapatite (HA)/Ti-6Al-4V composite coatings was studied by soaking the coatings in simulated body fluid (SBF) for up to 8 weeks. This investigation was aimed at elucidating the biological behaviour of plasma-sprayed HA/Ti-6Al-4V composite coatings by analyzing the changes in chemistry, and crystallinity of the(More)
The influence of crystallization, upon heat treatment, on the properties of high-velocity oxy-fuel (HVOF) sprayed hydroxyapatite (HA) coatings was investigated. The characterization of the HA coating was performed by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimeter (DSC) was employed to determine(More)
In tissue engineering (TE), temporary three-dimensional scaffolds are essential to guide cell proliferation and to maintain native phenotypes in regenerating biologic tissues or organs. To create the scaffolds, rapid prototyping (RP) techniques are emerging as fabrication techniques of choice as they are capable of overcoming many of the limitations(More)
Human mesenchymal stem cells (MSCs) have increasingly been used as cellular vectors for the delivery of therapeutic genes to tumors. However, the precise mechanism of mobilization remains poorly defined. In this study, MSCs that expressed similar cell surface markers and exhibited multilineage differentiation potentials were isolated from various donors.(More)
Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite(More)
The formation of biologically equivalent carbonate-containing apatite on the surface of synthetic hydroxyapatite (HA) is an important step leading to good bone healing. In this study, HA-reinforced polyetheretherketone (PEEK) composites were prepared by homogeneous mixing of HA and PEEK powders, compaction, and pressureless sintering. The bioactivity of(More)
The control of phase transformations in plasma sprayed hydroxyapatite (HA) coatings are critical to the clinical performance of the material. This paper reports the use of high temperature X-ray diffraction (HT-XRD) to study, in-situ, the phase transformations occurring in plasma sprayed HA coatings. The coatings were prepared using different spray power(More)
Polyetheretherketone-hydroxyapatite composites were developed as alternative materials for load-bearing orthopedic applications. The amount of hydroxyapatite (HA) incorporated into the polyetheretherketone (PEEK) polymer matrix ranges from 5 to 40 vol% and these materials were successfully fabricated by injection molding. This study presents the mechanical(More)