Learn More
Adenovirus (Ad) vectors provide a highly efficient means of mammalian gene transfer and are widely used for high-level protein expression in mammalian cells, as recombinant vaccines and for gene therapy. A commonly used method for constructing Ad vectors relies on in vivo homologous recombination between two Ad DNA-containing bacterial plasmids(More)
Helper-dependent adenoviral vectors (HDAds) are devoid of all viral coding sequences and have demonstrated tremendous potential for gene therapy by providing increased cloning capacity (up to 37 kb) and long-term, high-level transgene expression in vivo with negligible toxicity. Currently, the most widely used method of producing HDAds is the Cre/loxP(More)
Helper-dependent (HD) adenoviral vectors devoid of all viral coding sequences have a large cloning capacity and have been reported to provide long-term transgene expression in vivo with negligible toxicity, making them attractive vectors for gene therapy. Currently, the most efficient means of generating HD vectors involves co-infecting 293 cells expressing(More)
Gene transfer of CFTR cDNA to airway epithelia is a promising approach to treat cystic fibrosis (CF). Most gene transfer vectors use strong viral promoters even though the endogenous CFTR promoter is very weak. To learn whether expressing CFTR at a low level in a fraction of cells would correct Cl(-) transport, we mixed freshly isolated wild-type and CF(More)
Although approximately 3 % of the world's population is infected with Hepatitis C virus (HCV), there is no prophylactic vaccine available. This study reports the design, cloning and purification of a single polyprotein comprising the HCV core protein and non-structural proteins NS3, NS4a, NS4b, NS5a and NS5b. The immunogenicity of this polyprotein, which(More)
Helper-dependent adenoviral vectors possess a number of characteristics that make them attractive gene therapy vectors. These vectors are completely devoid of viral coding sequences and are able to mediate high-efficiency transduction in vivo to direct sustain high-level transgene expression with negligible chronic toxicity. This review focuses on advances(More)
Adenoviruses are robust gene delivery vectors in vivo, but are limited by their propensity to provoke strong innate and adaptive responses. Previous work has demonstrated that polyethylene glycol (PEG) modification of adenovirus can protect the vectors from preexisting and adaptive immune responses by reducing protein-protein interactions. To test whether(More)
We have evaluated the potential of liver-directed, helper-dependent adenoviral (HDAd) vector-mediated gene therapy in the hemophilia B dog. Two dogs were injected intravenously with HDAd (3 x 10(12) VP/kg) bearing a liver-restricted canine coagulation factor IX (FIX) expression cassette. After injection, the whole blood clotting time for both dogs declined(More)
The two-plasmid rescue method of constructing Ad vectors, which relies on either homologous or Cre-mediated recombination between two plasmids cotransfected into 293 or 293Cre4 cells, respectively, offers advantages over other approaches because of its simplicity. We have improved the efficiency of vector construction by both homologous and Cre-mediated(More)