Philip C. Nelson

Learn More
We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are(More)
The tethered particle motion (TPM) technique involves an analysis of the Brownian motion of a bead tethered to a slide by a single DNA molecule. We describe an improved experimental protocol with which to form the tethers, an algorithm for analyzing bead motion visualized using differential interference contrast microscopy, and a physical model with which(More)
We give a theoretical analysis of bead motion in tethered-particle experiments, a single-molecule technique that has been used to explore the dynamics of a variety of macromolecules of biological interest. Our analysis reveals that the proximity of the tethered bead to a nearby surface gives rise to a volume-exclusion effect, resulting in an entropic(More)
We calculate the probability of DNA loop formation mediated by regulatory proteins such as Lac repressor (LacI), using a mathematical model of DNA elasticity. Our model is adapted to calculating quantities directly observable in tethered particle motion (TPM) experiments, and it accounts for all the entropic forces present in such experiments. Our model has(More)
It is well known that transcription can induce torsional stress in DNA, affecting the activity of nearby genes or even inducing structural transitions in the DNA duplex. It has long been assumed that the generation of significant torsional stress requires the DNA to be anchored, forming a limited topological domain, because otherwise it would spin almost(More)
We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid(More)
In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription(More)
The force generated between actin and myosin acts predominantly along the direction of the actin filament, resulting in relative sliding of the thick and thin filaments in muscle or transport of myosin cargos along actin tracks. Previous studies have also detected lateral forces or torques that are generated between actin and myosin, but the origin and(More)
Direct Determination of DNA Twist-Stretch Coupling Randall D. Kamien, Tom C. Lubensky, Philip Nelson, and Corey S. O'Hern Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA The symmetries of the DNA double helix require a new term in its linear response to stress: the coupling between twist and stretch. Recent(More)