Learn More
Membrane proteins function in a polarized ionic environment with sodium-rich extracellular and potassium-rich intracellular solutions. Glutamate receptors that mediate excitatory synaptic transmission in the brain show unusual sensitivity to external ions, resulting in an apparent requirement for sodium in order for glutamate to activate kainate receptors.(More)
Ionotropic GABA receptors are abundant in both vertebrate and invertebrate nervous systems, where they mediate rapid, mostly inhibitory synaptic transmission. A GABA-gated chloride channel subunit from Drosophila melanogaster [Resistant to Dieldrin (RDL)] has been cloned, functionally expressed, and found to exhibit many aspects of the pharmacology of(More)
The alpha4beta2 subtype is the most abundant nicotinic acetylcholine receptor (nAChR) in the brain and possesses the high-affinity binding site for nicotine. The alpha4 and beta2 nAChR subunits assemble into two alternate stoichiometries, (alpha4)(2)(beta2)(3) and (alpha4)(3)(beta2)(2), which differ in their functional properties and sensitivity to chronic(More)
The acetylcholine-binding protein (AChBP) is homologous to the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) and other members of the Cys-loop family of neurotransmitter receptors. The high-resolution X-ray structures of AChBP mean it has been used as a model from which to understand agonist and antagonist binding to nAChRs. We(More)
GluR0 is a prokaryotic homologue of mammalian glutamate receptors that forms glutamate-activated, potassium-selective ion channels. The topology of its transmembrane (TM) domain is similar to that of simple potassium channels such as KcsA. Two plausible alignments of the sequence of the TM domain of GluR0 with KcsA are possible, differing in the region of(More)
Ions play a modulatory role in many proteins. Kainate receptors, members of the ionotropic glutamate receptor family, require both monovalent anions and cations in the extracellular milieu for normal channel activity. Molecular dynamics simulations and extensive relative binding free energy calculations using thermodynamic integration were performed to(More)
Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large(More)
Ionotropic glutamate receptors are essential for fast synaptic nerve transmission. Recent x-ray structures for the ligand-binding (S1S2) region of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive receptor have suggested how differences in protein/ligand interactions may determine whether a ligand will behave as a full(More)
G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs(More)
The ligand-binding domain (LBD) from the ionotropic glutamate receptor subtype 2 (GluR2) has been shown to adopt a range of ligand-dependent conformational states. These states have been described in terms of the rotation required to fit subdomain (lobe) 2 following superposition of subdomain (lobe) 1. The LBD has a closed-cleft conformation for full(More)