Philip C. Bevilacqua

Learn More
RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure(More)
Many protein enzymes use general acid-base catalysis as a way to increase reaction rates. The amino acid histidine is optimized for this function because it has a pK(a) (where K(a) is the acid dissociation constant) near physiological pH. The RNA enzyme (ribozyme) from hepatitis delta virus catalyzes self-cleavage of a phosphodiester bond. Reactivity-pH(More)
RNA duplexes have been catapulted into the spotlight by the discovery of RNA interference and related phenomena. But double-stranded and highly structured RNAs have long been recognized as key players in cell processes ranging from RNA maturation and localization to the antiviral response in higher organisms. Penetrating insights into the metabolism and(More)
Self-cleaving RNAs have recently been identified in mammalian genomes. A small ribozyme related in structure to the hepatitis delta virus (HDV) ribozyme occurs in a number of mammals, including chimpanzees and humans, within an intron of the CPEB3 gene. The catalytic mechanisms for the CPEB3 and HDV ribozymes appear to be similar, generating cleavage(More)
The human double-stranded RNA- (dsRNA) activated protein kinase (PKR) has a dsRNA-binding domain (dsRBD) that contains two tandem copies of the dsRNA-binding motif (dsRBM). The minimal-length polypeptide required to bind dsRNA contains both dsRBMs, as determined by mobility-shift and filter-binding assays. Mobility-shift experiments indicate binding(More)
The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate 2',3'-cyclic phosphate and 5'-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pK(a) shifted >2 pH units toward(More)
Molecular patterns in pathogenic RNAs can be recognized by the innate immune system, and a component of this response is the interferon-induced enzyme RNA-activated protein kinase (PKR). The major activators of PKR have been proposed to be long double-stranded RNAs. We report that RNAs with very limited secondary structures activate PKR in a(More)
The hepatitis delta virus (HDV) ribozyme and HDV-like ribozymes are self-cleaving RNAs found throughout all kingdoms of life. These RNAs fold into a double-nested pseudoknot structure and cleave RNA, yielding 2',3'-cyclic phosphate and 5'-hydroxyl termini. The active site nucleotide C75 has a pK(a) shifted >2 pH units toward neutrality and has been(More)
Protein kinase R (PKR) is an essential component of the innate immune response. In the presence of double-stranded RNA (dsRNA), PKR is autophosphorylated, which enables it to phosphorylate its substrate, eukaryotic initiation factor 2alpha, leading to translation cessation. Typical activators of PKR are long dsRNAs produced during viral infection, although(More)
Changes in RNA conformation can alter gene expression. The guanine quadruplex sequence (GQS) is an RNA motif that folds in the presence of K(+) ions. Changes in the conformation of this motif could be especially important in regulating gene expression in plants because intracellular K(+) concentrations often increase during drought stress. Little is known(More)