Learn More
In this study, we use three monoclonal antibodies that recognise antigens present in the central nervous system of the ascidian Ciona intestinalis to study regeneration and post-metamorphic development of the neural ganglion. We have also used bromodeoxyuridine labelling to study generation of the neuronal precursor cells. The first antibody, CiN 1,(More)
In order to study the mechanisms of synaptogenesis in the rat cerebellar cortex, a library of monoclonal antibodies has been generated against proteins of the isolated synapse. One recognizes a glycosylated 38 kDa protein that is concentrated in the synaptic vesicle fraction and resembles synaptophysin biochemically in its molecular weight, charge, and(More)
A monoclonal antibody, mab SMgp65, which recognises two major glycoprotein components of isolated forebrain synaptic subfractions has been raised. The mab has been used to study the cellular and subcellular localisation of these novel glycoproteins and for the partial characterisation of both molecular species. Western blots show that the mab reacts with(More)
Mutations in either of two presenilin genes can cause familial Alzheimer's disease. Presenilins have both proteolysis-dependent functions, as components of the γ-secretase complex, and proteolysis-independent functions in signalling. In this study, we investigate a conserved function of human presenilins in the development of the simple model organism(More)
Myoclonus-dystonia syndrome (MDS) is a genetically heterogeneous disorder characterized by myoclonic jerks often seen in combination with dystonia and psychiatric co-morbidities and epilepsy. Mutations in the gene encoding epsilon-sarcoglycan (SGCE) have been found in some patients with MDS. SGCE is a maternally imprinted gene with the disease being(More)
BACKGROUND It is becoming increasingly evident that deficits in the cortex and hippocampus at early stages of dementia in Alzheimer's disease (AD) are associated with synaptic damage caused by oligomers of the toxic amyloid-β peptide (Aβ42). However, the underlying molecular and cellular mechanisms behind these deficits are not fully understood. Here we(More)
Protein tyrosine phosphatases play a critical role in controlling tyrosine phosphorylation levels of proteins. Ischemia induces changes in tyrosine phosphorylation. As part of our investigations of the mechanisms responsible for these changes, we studied the effects of cerebral hypoxia-ischemia in 7-day-old (P7) and P21 rat brains on expression of the STEP(More)
As part of a study on echinoderm and ascidian neural regeneration, attempts were made to develop a system for the maintenance of their neurons in vitro. It was found that neurons and neural tissue explants from the starfish, Asterias rubens, and the brittlestar, Ophiura ophiura, and explants from the brain of the ascidian, Ciona intestinalis, could be(More)
We have previously described a monoclonal antibody, PAC 1, that recognises two postsynaptic density (PSD)-enriched glycoproteins (pgps) of apparent M(r) 130,000 (pgp130) and 117,000 (pgp117). Immunodevelopment of western blots of rat forebrain homogenate, synaptic membrane (SM), and PSD samples with PAC 1 and an N-cadherin antiserum shows that pgp130 and(More)
Neuroplastin (np) 55 and 65 are immunoglobulin superfamily members that arise by alternative splicing of the same gene and have been implicated in long-term activity-dependent synaptic plasticity. Both biochemical and immunocytochemical data suggest that np55 is the predominant isoform (>95% of total neuroplastin) in cerebellum. Neuroplastin(More)