Philip Amberg

Learn More
We report the first sub-picojoule per bit (400fJ/bit) operation of a silicon modulator intimately integrated with a driver circuit and embedded in a clocked digital transmitter. We show a wall-plug power efficiency below 400microW/Gbps for a 130nm SOI CMOS carrier-depletion ring modulator flip-chip integrated to a 90nm bulk Si CMOS driver circuit. We also(More)
Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved(More)
Mechanical strain is an important signal that influences the behavior and properties of cells in a wide variety of tissues. Physiologically similar mechanical strain can revert cultured cells to a more normal phenotype. Here, we have demonstrated that 3% equibiaxial (EB) and uniaxial strains confer favorable protein expression in cultured rabbit corneal(More)
We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW(More)
This paper describes the algorithm and design tradeoffs for multiple hardware implementations of parallel high-radix scalable Montgomery multipliers. Hardware implementations of Montgomery multipliers require choosing a radix, shift direction, and whether to use Booth encoding. Presented are processing element designs exploring combinations of radices 2, 4,(More)
We demonstrate the first germanium-silicon C-band electro-absorption based waveguide modulator array and echelle-grating-based silicon wavelength multiplexer integrated with a digital CMOS driver circuit. A 9-channel, 10Gbps SiGe electro-absorption wavelength-multiplexed modulator array consumed a power of 5.8mW per channel while being modulated at(More)
We report on a packaged prototype of a WDM photonic transceiver. It is an all-solid state hybrid assembly based on 130nm SOI photonic circuitry integrated with a 40nm CMOS VLSI driver. Our prototype supports eight tunable WDM channels operating at 10Gb/s, each capable of both transmitting and receiving data on the same chip. We discuss two options to close(More)