Learn More
We calculate the membrane-induced interaction between inclusions, in terms of the membrane stretching and bending moduli and the spontaneous curvature. We find that the membrane-induced interaction between inclusions varies nonmonotonically as a function of the inclusion spacing. The location of the energy minimum depends on the spontaneous curvature and(More)
Cell membranes contain small domains (on the order of nanometers in size, sometimes called rafts) of lipids whose hydrocarbon chains are more ordered than those of the surrounding bulk-phase lipids. Whether these domains are fluctuations, metastable, or thermodynamically stable, is still unclear. Here, we show theoretically how a lipid with one saturated(More)
We reconcile single-molecule force-extension data with scaling theories of polymer elasticity: measurements of denatured single-stranded DNA show a regime where the extension grows as a nonlinear power law with force, in accordance with "tensile blob" models. Analysis of the salt dependence of this regime indicates that the polymer's Kuhn length is(More)
The curvature elastic energy of bilayer vesicles formed by a mixture of two surfactants, which individually form either micelles or lamellar bilayer phases is described theoretically. In the limit of large bending elastic modulus K being much greater than the temperature T, the free energy is minimized by vesicles with different concentrations of the two(More)
We report on a molecular simulation method, which captures the self-assembly of cationic lipid-DNA (CL-DNA) gene delivery complexes. Computational efficiency required for large length- and time-scale simulations is achieved through a coarse-grained representation of the intramolecular details and via intermolecular potentials, which effectively mimic the(More)
We perform Monte Carlo simulations of tau proteins bound to a cylinder that mimics a microtubule (MT), and then study them in solution. Tau protein binds to a highly anionic MT surface to stabilize the cylindrical structure of MT. The negatively charged tail domain floats away from the anionic MT surface while positively charged tau segments localize near(More)
Multivalent counterions can induce an effective attraction between like-charged rodlike polyelectrolytes, leading to the formation of polyelectrolyte bundles. In this paper, we calculate the equilibrium bundle size using a simple model in which the attraction between polyelectrolytes (assumed to be pairwise additive) is treated phenomenologically. If the(More)
We present a mechanism for the aggregation of mobile intermembrane junctions, such as the connexon dyad of gap junctions. The model demonstrates that intermembrane repulsion provides a powerful self-assembly pressure. If the membrane repulsion is strong enough to prevent membrane adhesion, then the self-assembly pressure is of effective infinite range.
Recent experiments (Gambin, Y., R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M. Genest, R. S. Hodes, and W. Urbach. 2006. Proc. Natl. Acad. Sci. USA. 103:2098-2102) have called into question the applicability of the Saffman-Delbrück diffusivity for proteins embedded in the lipid bilayers. We present a simple argument to account for this observation(More)
We study the effect of dumbbell-like counterions on the interactions between similarly charged surfaces. Via a systematic study using Monte Carlo simulations and field theory, we fully consider electrostatic correlations and ion structure and find that their intricate coupling determines the equilibrium phase behaviors. In particular, an energetic bridging(More)