Learn More
Ecosystem responses to increased variability in rainfall, a prediction of general circulation models, were assessed in native grassland by reducing storm frequency and increasing rainfall quantity per storm during a 4-year experiment. More extreme rainfall patterns, without concurrent changes in total rainfall quantity, increased temporal variability in(More)
Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in(More)
uman activities have caused dramatic and unprecedented changes in the global chemical and physical environment, including well-documented increases in atmospheric carbon dioxide (CO 2) concentration and mean annual temperature (Karl and Knight 1998, New et al. 2001, IPCC 2007). If greenhouse gas emissions continue to increase at present rates, atmospheric(More)
Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great(More)
  • C H R I S T O P H E, R W H A R P E R, +6 authors N D C A R L I S L E
  • 2005
Predicted climate changes in the US Central Plains include altered precipitation regimes with increased occurrence of growing season droughts and higher frequencies of extreme rainfall events. Changes in the amounts and timing of rainfall events will likely affect ecosystem processes, including those that control C cycling and storage. Soil carbon dioxide(More)
Although the potential for increased temperature is the primary and best-studied aspect of anthropogenic climate change, altered rainfall patterns, increased storm intensity, and more severe droughts are also predicted in most climate-change scenarios. We altered experimentally the rainfall regime in a native tallgrass prairie in northeastern Kansas and(More)
Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species(More)
Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous(More)
Dynamic global vegetation models simulate feedbacks of vegetation change on ecosystem processes, but direct, experimental evidence for feedbacks that result from atmospheric CO2 enrichment is rare. We hypothesized that feedbacks from species change would amplify the initial CO2 stimulation of aboveground net primary productivity (ANPP) of tallgrass prairie(More)
Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver-productivity relationships depends on(More)