Learn More
  • Olga Peñagarikano, Brett S. Abrahams, Edward I. Herman, Kellen D. Winden, Amos Gdalyahu, Hongmei Dong +8 others
  • 2011
Although many genes predisposing to autism spectrum disorders (ASD) have been identified, the biological mechanism(s) remain unclear. Mouse models based on human disease-causing mutations provide the potential for understanding gene function and novel treatment development. Here, we characterize a mouse knockout of the Cntnap2 gene, which is strongly(More)
Visual cortical neurons fire at higher rates to visual stimuli during locomotion than during immobility, while maintaining orientation selectivity. The mechanisms underlying this change in gain are not understood. We performed whole-cell recordings from layer 2/3 and layer 4 visual cortical excitatory neurons and from parvalbumin-positive and(More)
Subtle alterations in how cortical network dynamics are modulated by different behavioral states could disrupt normal brain function and underlie symptoms of neuropsychiatric disorders, including Fragile X syndrome (FXS). Using two-photon calcium imaging and electrophysiology, we recorded spontaneous neuronal ensemble activity in mouse somatosensory cortex.(More)
During neocortical development, neurons exhibit highly synchronized patterns of spontaneous activity, with correlated bursts of action potential firing dominating network activity. This early activity is eventually replaced by more sparse and decorrelated firing of cortical neurons, which modeling studies predict is a network state that is better suited for(More)
ALS8 is caused by a dominant mutation in an evolutionarily conserved protein, VAPB (vesicle-associated membrane protein (VAMP)-associated membrane protein B)/ALS8). We have established a fly model of ALS8 using the corresponding mutation in Drosophila VAPB (dVAP33A) and examined the effects of this mutation on VAP function using genetic and morphological(More)
  • Csaba Varga, Mikko Oijala, Jonathan Lish, Gergely G Szabo, Marianne Bezaire, Ivan Marchionni +2 others
  • 2014
Fast spiking, parvalbumin (PV) expressing hippocampal interneurons are classified into basket, axo-axonic (chandelier), and bistratified cells. These cell classes play key roles in regulating local circuit operations and rhythmogenesis by releasing GABA in precise temporal patterns onto distinct domains of principal cells. In this study, we show that each(More)
Endogenous brain rhythms occurring at various frequencies and associated with distinct behavioral states provide multiscale temporal windows that enable cells to time their spiking activity with high precision, which is thought to be important for the coding of information in neuronal circuits. However, although the selective timing of GABAergic inputs to(More)
In vivo two-photon calcium imaging would benefit from the use of multiple excitation beams to increase scanning speed, signal-to-noise ratio and field of view or to image different axial planes simultaneously. Using spatiotemporal multiplexing we circumvented light-scattering ambiguity inherent to deep-tissue multifocal two-photon microscopy. We demonstrate(More)
DNA methylation is a major epigenetic factor regulating genome reprogramming, cell differentiation and developmental gene expression. To understand the role of DNA methylation in central nervous system (CNS) neurons, we generated conditional Dnmt1 mutant mice that possess approximately 90% hypomethylated cortical and hippocampal cells in the dorsal(More)
  • Amos Gdalyahu, Elaine Tring, Pierre-Olivier Polack, Robin Gruver, Peyman Golshani, Michael S. Fanselow +2 others
  • 2012
Several models of associative learning predict that stimulus processing changes during association formation. How associative learning reconfigures neural circuits in primary sensory cortex to "learn" associative attributes of a stimulus remains unknown. Using 2-photon in vivo calcium imaging to measure responses of networks of neurons in primary(More)