Petur Gordon Hermannsson

  • Citations Per Year
Learn More
We demonstrate plasmonic nanowire-based thermo-optic variable optical attenuators operating in the 1525-1625 nm wavelength range. The devices have a footprint as low as 1 mm, extinction ratio exceeding 40 dB, driving voltage below 3 V, and full modulation bandwidth of 1 kHz. The polarization dependent loss is shown to be critically dependent on the nanowire(More)
An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5 × 10(-6) RIU when measured in conjunction with a spectrometer of 12 pm/pixel(More)
In the past decade, photonic crystal resonant reflectors have been increasingly used as the basis for label-free biochemical assays in lab-on-a-chip applications. In both designing and interpreting experimental results, an accurate model describing the optical behavior of such structures is essential. Here, an analytical method for precisely predicting the(More)
We demonstrate the feasibility of fabricating thermo-optic plasmonic devices for variable optical attenuation and/or low-frequency (kHz) signal modulation. Results of finite-element simulations and experimental characterization of prototype devices indicate that a plasmonic device can reach specifications similar to or better than commercially available(More)
  • 1