Learn More
The Ca(2+) channel alpha(1S) subunit (Ca(V)1.1) is the voltage sensor in skeletal muscle excitation-contraction (EC) coupling. Upon membrane depolarization, this sensor rapidly triggers Ca(2+) release from internal stores and conducts a slowly activating Ca(2+) current. However, this Ca(2+) current is not essential for skeletal muscle EC coupling. Here, we(More)
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in(More)
L-type calcium channels (Cav1) represent one of the three major classes (Cav1-3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1-Cav1.4) form the(More)
BACKGROUND Cav1.3 voltage-gated L-type calcium channels (LTCCs) are part of postsynaptic neuronal signaling networks. They play a key role in brain function, including fear memory and emotional and drug-taking behaviors. A whole-exome sequencing study identified a de novo mutation, p.A749G, in Cav1.3 α1-subunits (CACNA1D), the second main LTCC in the brain,(More)
Cav1.2 and Cav1.3 are the main L-type Ca(2+) channel subtypes in the brain. Cav1.3 channels have recently been implicated in the pathogenesis of Parkinson's disease. Therefore, Cav1.3-selective blockers are developed as promising neuroprotective drugs. We studied the pharmacological properties of a pyrimidine-2,4,6-trione derivative(More)
CaV1.1e is the voltage-gated calcium channel splice variant of embryonic skeletal muscle. It differs from the adult CaV1.1a splice variant by the exclusion of exon 29 coding for 19 amino acids in the extracellular loop connecting transmembrane domains IVS3 and IVS4. Like the adult splice variant CaV1.1a, the embryonic CaV1.1e variant functions as voltage(More)
Auxiliary channel subunits regulate membrane expression and modulate current properties of voltage-activated Ca(2+) channels and thus are involved in numerous important cell functions, including muscle contraction. Whereas the importance of the alpha(1S), beta(1a), and gamma Ca(2+) channel subunits in skeletal muscle has been determined by using null-mutant(More)
In neurons L-type calcium currents function in gene regulation and synaptic plasticity, while excessive calcium influx leads to excitotoxicity and neurodegeneration. The major neuronal Ca(V)1.2 L-type channels are localized in clusters in dendritic shafts and spines. Whereas Ca(V)1.2 clusters remain stable during NMDA-induced synaptic depression, L-type(More)
L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However,(More)
To identify the genetic locus responsible for malignant hyperthermia susceptibility (MHS) in an Italian family, we performed linkage analysis to recognized MHS loci. All MHS individuals showed cosegregation of informative markers close to the voltage-dependent Ca(2+) channel (Ca(V)) α(1S)-subunit gene (CACNA1S) with logarithm of odds (LOD)-score values that(More)