Learn More
CRISPR/Cas is a revolutionary gene editing technology with wide-ranging utility. The safe, non-viral delivery of CRISPR/Cas components would greatly improve future therapeutic utility. We report the synthesis and development of zwitterionic amino lipids (ZALs) that are uniquely able to (co)deliver long RNAs including Cas9 mRNA and sgRNAs. ZAL nanoparticle(More)
RNA-based cancer therapies are hindered by the lack of delivery vehicles that avoid cancer-induced organ dysfunction, which exacerbates carrier toxicity. We address this issue by reporting modular degradable dendrimers that achieve the required combination of high potency to tumors and low hepatotoxicity to provide a pronounced survival benefit in an(More)
The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable polyesters.1 A variety of functional groups have been introduced into lactones;(More)
The development of efficacious carriers is an important long-standing challenge in gene therapy. In the past few decades, tremendous progress has been made toward non-viral vectors for gene delivery including cationic lipids and polymers. However, there continues to be a need for clinically translatable polymer-based delivery carriers because they offer(More)
Conventional chemotherapeutics nonselectively kill all rapidly dividing cells, which produces numerous side effects. To address this challenge, we report the discovery of functional polyesters that are capable of delivering siRNA drugs selectively to lung cancer cells and not to normal lung cells. Selective polyplex nanoparticles (NPs) were identified by(More)
Tremendous effort has been made to improve stability and delivery efficacy of small RNA therapeutics. However, nearly all current nano-encapsulation carriers utilize the critical balance between only two interacting parameters: RNA-binding electrostatic interactions and nanoparticle-stabilizing hydrophobic interactions. We report the development of(More)
  • 1