Learn More
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min),(More)
A variety of extracellular serine proteases are expressed in the central nervous system or might permeate the blood-brain barrier under pathological conditions. However, their intracerebral targets and physiological functions are largely unknown. Here, we show that four distinct subtypes of protease-activated receptors (PARs) are abundantly expressed in the(More)
It has been shown previously that clenbuterol, a beta 2-adrenergic receptor agonist, enhances NGF synthesis in adult rat brain. Since NGF is able to protect neurons against damage, we tried to find out whether clenbuterol can rescue cultured hippocampal neurons from excitotoxic damage by induction of NGF. The neuroprotective activity of clenbuterol on(More)
Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures(More)
Regarding regenerative strategies early post-ischemic therapeutic interventions might have a great impact on further pathophysiological cascades. To understand the early post-ischemic events we analyzed proliferation and neurogenesis as early as on day 3 after transient global ischemia in rats. Evaluations were performed not only in the dorsal hippocampus,(More)
Pituitary adenylate cyclase activating peptide (PACAP) and the chemokine stromal cell-derived factor (SDF-1) have been implicated in neuroprotection, neurogenesis, and regeneration. Focal ischemia is associated with rapid upregulation of PACAP in perifocal neurons and delayed induction of SDF-1 in hypoxic/ischemic tissues, the latter process being involved(More)
The role of group III metabotropic glutamate receptors (mGluR) in ischaemic neurodegeneration is still unsettled. In order to examine a possible modulatory effect of these receptors on ischaemia-induced damage we tested the novel selective agonist (R, S)-4-phosphonophenylglycine [(R,S)-PPG] after an hypoxic/hypoglycaemic insult in rat hippocampal slices.(More)
With in vivo confocal neuroimaging (ICON), single retinal ganglion cells (RGCs) can be visualized non-invasively, repeatedly, in real-time and under natural conditions. Here we report the use of ICON to visualize dynamic changes in RGC morphology, connectivity and functional activation using calcium markers, and to visualize nanoparticle transport across(More)
Prothrombin, protease-activated receptors (PARs) and the specific thrombin inhibitor protease nexin-1 (PN-1) are expressed in the brain. Recent studies have shown that the serine protease thrombin, depending on its concentration, plays an important role in neuronal degeneration or protection after cerebral ischemia. However, it is still uncertain whether a(More)
The serine protease thrombin has shown direct neuroprotective and neurotoxic effects on brain tissue in cerebral ischemia. Previous data suggested that thrombin-induced protection in vivo can be achieved by preconditioning rather than by acute treatment. In the current work, we used a model of mild ischemia to investigate the effects of preischemic(More)