Learn More
The adaptive immune response and, in particular, T cells have been shown to be important in the genesis of hypertension. In the present study, we sought to determine how the interplay between ANG II, NADPH oxidase, and reactive oxygen species modulates T cell activation and ultimately causes hypertension. We determined that T cells express angiotensinogen,(More)
We tested the hypothesis that the renin inhibitor aliskiren ameliorates organ damage in rats transgenic for human renin and angiotensinogen genes (double transgenic rat [dTGR]). Six-week-old dTGR were matched by albuminuria (2 mg per day) and divided into 5 groups. Untreated dTGR were compared with aliskiren (3 and 0.3 mg/kg per day)-treated and valsartan(More)
About 10% of hip endoprostheses will loosen after 10 years. Prosthesis loosening is caused by two different pathomechanisms: aseptic loosening (AL) and septic loosening (SL). This study evaluated differences in gene expression in AL and SL. Eight hybridizations were performed on PIQOR cDNA arrays. Objects of the study were periprosthetic interface tissue(More)
BACKGROUND Hypertensive target organ damage, especially cardiac hypertrophy with heart failure and arrhythmia, is a major source of morbidity and mortality. Angiotensin II, a major mediator of hypertension and cardiac damage, has proinflammatory properties. Inflammation and activation of the immune system play a pivotal role in pathogenesis of hypertensive(More)
We used rats transgenic for the human angiotensinogen (hAogen) gene and the human renin (hRen) gene and crossed the strains to produce a model of preeclampsia in the dams. The female (n=9) hAogen x male hRen cross had severe (telemetry-measured) hypertension and albuminuria, which developed during the last trimester of pregnancy and subsided after delivery.(More)
We investigated whether or not p38 mitogen-activated protein kinase inhibition ameliorates angiotensin II-induced target organ damage. We used double transgenic rats harboring both human renin and angiotensinogen genes (dTGRs). dTGR, with or without p38 inhibitor (BIRB796; 30 mg/kg per day in the diet), and nontransgenic Sprague-Dawley rats were studied in(More)
Renin initiates angiotensin II formation and has no other known functions. We observed that transgenic rats (TGR) overexpressing the human renin gene (hREN) developed moderate obesity with increased body fat mass and glucose intolerance compared with nontransgenic Sprague-Dawley (SD) rats. The metabolic changes were not reversed by an angiotensin-converting(More)
Rats harboring the human renin and angiotensinogen genes (dTGR) feature angiotensin (ANG) II/hypertension-induced cardiac damage and die suddenly between wk 7 and 8. We observed by electrocardiogram (ECG) telemetry that ventricular tachycardia (VT) is a common terminal event in these animals. Our aim was to investigate electrical remodeling. We used ECG(More)
We studied the effects of extremely low-dose human renin inhibition (aliskiren) with low angiotensin II receptor blockade (losartan) in a novel double-transgenic rat model harbouring both human renin and angiotensinogen genes. We found that low-dose aliskiren and low-dose losartan effectively reduced mortality and target-organ damage with minimal,(More)
About one-half of double transgenic rats (dTGR) overexpressing the human renin and angiotensinogen genes die by age 7 wk of terminal heart failure (THF); the other (preterminal) one-half develop cardiac damage but survive. Our study's aim was to elucidate cardiac gene expression differences in dTGR-THF compared with dTGR showing compensated cardiac(More)