Petr E. Pyagay

Learn More
Transforming growth factor (TGF)-beta plays a critical role in diabetic nephropathy. To isolate the contribution of one of the signaling pathways of TGF-beta, the Smad3 gene in the mouse was knocked out at exons 2 and 3, and the effect was studied in streptozotocin (STZ)-induced diabetes over a period of 6 wk. TGF-beta activity was increased in the diabetic(More)
For investigation of how the vascular endothelial growth factor (VEGF) system participates in the pathogenesis of diabetic kidney disease, type 2 diabetic db/db and control db/m mice were treated intraperitoneally with vehicle or 2 mg/kg of a pan-VEGF receptor tyrosine kinase inhibitor, SU5416, twice a week for 8 wk. Efficacy of SU5416 treatment in the(More)
The role of monocyte chemoattractant protein-1 (MCP-1) in diabetic nephropathy is typically viewed through the lens of inflammation, but MCP-1 might exert noninflammatory effects on the kidney cells directly. Glomerular podocytes in culture, verified to express the marker nephrin, were exposed to diabetic mediators such as high glucose or angiotensin II and(More)
BACKGROUND/AIMS Tumor necrosis factor (TNF)-α is believed to play a role in diabetic kidney disease. This study explores the specific effects of TNF-α with regard to nephropathy-relevant parameters in the podocyte. METHODS Cultured mouse podocytes were treated with recombinant TNF-α and assayed for production of monocyte chemoattractant protein-1 (MCP-1)(More)
The podocyte is a highly specialized kidney glomerular epithelial cell that plays an essential role in glomerular filtration and is believed to be the target of numerous glomerular diseases leading to proteinuria. Despite the leaps in our understanding of podocyte biology, new methodologies are needed to facilitate research into the cell. Multiphoton(More)
  • 1