Petko M. Kitanov

Learn More
Double Hopf bifurcations have been studied prior to this work in the generic nonresonant case and in certain strongly resonant cases, including 1:1 resonance. In this paper, the case of symmetrically coupled identical oscillators, motivated by the classic problem of synchronization of Huygens' clocks, is studied using the codimension-three Elphick–Huygens(More)
This paper presents a study of the effects of symmetry on the generic bifurca-tion at a double-zero eigenvalue that was first investigated by Bogdanov and Takens. Two different symmetry groups are considered: Huygens symmetry and odd-Huygens symmetry. Here Huygens symmetry means that the system is equivariant under permutation of the two state variables.(More)
  • 1