Peter van Gelderen

Learn More
Heart rate fluctuations occur in the low-frequency range (<0.1 Hz) probed in functional magnetic resonance imaging (fMRI) studies of resting-state functional connectivity and most fMRI block paradigms and may be related to low-frequency blood-oxygenation-level-dependent (BOLD) signal fluctuations. To investigate this hypothesis, temporal correlations(More)
The ability to detect brain anatomy and pathophysiology with MRI is limited by the contrast-to-noise ratio (CNR), which depends on the contrast mechanism used and the spatial resolution. In this work, we show that in MRI of the human brain, large improvements in contrast to noise in high-resolution images are possible by exploiting the MRI signal phase at(More)
Recent blood oxygenation level dependent functional MRI (BOLD fMRI) studies of the human brain have shown that in the absence of external stimuli, activity persists in the form of distinct patterns of temporally correlated signal fluctuations. In this work, we investigated the spontaneous BOLD signal fluctuations during states of reduced consciousness such(More)
Recent advances in high-field MRI have dramatically improved the visualization of human brain anatomy in vivo. Most notably, in cortical gray matter, strong contrast variations have been observed that appear to reflect the local laminar architecture. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, possibly(More)
Phase images in susceptibility-weighted MRI of brain provide excellent contrast. However, the phase is affected by tissue geometry and orientation relative to the main magnetic field (B(0)), and phase changes extend beyond areas of altered susceptibility. Magnetic susceptibility, on the other hand, is an intrinsic tissue property, closely reflecting tissue(More)
Imagining motor acts is a cognitive task that engages parts of the executive motor system. While motor imagery has been intensively studied using neuroimaging techniques, most studies lack behavioral observations. Here, we used functional MRI to compare the functional neuroanatomy of motor execution and imagery using a task that objectively assesses imagery(More)
Magnetic resonance (MR) tracking of magnetically labeled stem and progenitor cells is an emerging technology, leading to an urgent need for magnetic probes that can make cells highly magnetic during their normal expansion in culture. We have developed magnetodendrimers as a versatile class of magnetic tags that can efficiently label mammalian cells,(More)
Functional magnetic resonance imaging (fMRI) is a potential paradigm shift in psychiatric neuroimaging. The technique provides individual, rather than group-averaged, functional neuroimaging data, but subtle methodological confounds represent unique challenges for psychiatric research. As an exemplar of the unique potential and problems of fMRI, we present(More)
Signal fluctuations in functional magnetic resonance imaging (fMRI) can result from a number of sources that may have a neuronal, physiologic or instrumental origin. To determine the relative contribution of these sources, we recorded physiological (respiration and cardiac) signals simultaneously with fMRI in human volunteers at rest with their eyes closed.(More)
Positron emission tomography (PET) functional imaging is based on changes in regional cerebral blood flow (rCBF). Functional magnetic resonance imaging (fMRI) is based on a variety of physiological parameters as well as rCBF. This study is aimed at the cross validation of three-dimensional (3D) fMRI, which is sensitive to changes in blood oxygenation, with(More)