Learn More
The ability to detect brain anatomy and pathophysiology with MRI is limited by the contrast-to-noise ratio (CNR), which depends on the contrast mechanism used and the spatial resolution. In this work, we show that in MRI of the human brain, large improvements in contrast to noise in high-resolution images are possible by exploiting the MRI signal phase at(More)
Heart rate fluctuations occur in the low-frequency range (<0.1 Hz) probed in functional magnetic resonance imaging (fMRI) studies of resting-state functional connectivity and most fMRI block paradigms and may be related to low-frequency blood-oxygenation-level-dependent (BOLD) signal fluctuations. To investigate this hypothesis, temporal correlations(More)
Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic(More)
Functional magnetic resonance imaging (fMRI) is a potential paradigm shift in psychiatric neuroimaging. The technique provides individual, rather than group-averaged, functional neuroimaging data, but subtle methodological confounds represent unique challenges for psychiatric research. As an exemplar of the unique potential and problems of fMRI, we present(More)
Recent blood oxygenation level dependent functional MRI (BOLD fMRI) studies of the human brain have shown that in the absence of external stimuli, activity persists in the form of distinct patterns of temporally correlated signal fluctuations. In this work, we investigated the spontaneous BOLD signal fluctuations during states of reduced consciousness such(More)
Recent advances in high-field MRI have dramatically improved the visualization of human brain anatomy in vivo. Most notably, in cortical gray matter, strong contrast variations have been observed that appear to reflect the local laminar architecture. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, possibly(More)
Resting-state, low-frequency (<0.08 Hz) fluctuations of blood oxygenation level-dependent (BOLD) magnetic resonance signal have been shown to exhibit high correlation among functionally connected regions. However, correlations of cerebral blood flow (CBF) fluctuations during the resting state have not been extensively studied. The main challenges of using(More)
Signal fluctuations in functional magnetic resonance imaging (fMRI) can result from a number of sources that may have a neuronal, physiologic or instrumental origin. To determine the relative contribution of these sources, we recorded physiological (respiration and cardiac) signals simultaneously with fMRI in human volunteers at rest with their eyes closed.(More)
Recent in vivo MRI studies at 7.0 T have demonstrated extensive heterogeneity of T(2)* relaxation in white matter of the human brain. In order to study the origin of this heterogeneity, we performed T(2)* measurements at 1.5, 3.0, and 7.0 T in normal volunteers. Formalin-fixed brain tissue specimens were also studied using T(2)*-weighted MRI, histologic(More)
By using the (14C)2-deoxyglucose method, inhibition has been shown to be a metabolically active process at the level of the synapse. This is supported by recent results from magnetic resonance spectroscopy that related the changes in neuroenergetics occurring with functional activation to neurotransmitter cycling. However, inhibitory synapses are less(More)