Learn More
The spore-forming bacterium and model prokaryotic genetic system, Bacillus subtilis, is extremely useful in the study of oxidative stress management through proteomic and genome-wide transcriptomic analyses, as well as through detailed structural studies of the regulatory factors that govern the oxidative stress response. The factors that sense oxidants and(More)
Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven(More)
Transcriptional activator proteins in bacteria often operate by interaction with the C-terminal domain of the alpha-subunit of RNA polymerase (RNAP). Here we report the discovery of an "anti-alpha" factor Spx in Bacillus subtilis that blocks transcriptional activation by binding to the alpha-C-terminal domain, thereby interfering with the capacity of RNAP(More)
Successful respiration in Bacillus subtilis using oxygen or nitrate as the terminal electron acceptor requires the ResD-ResE signal transduction system. Although transcription of ResDE-controlled genes is induced at the stationary phase of aerobic growth, it is induced to a higher extent upon oxygen limitation. Furthermore, maximal transcriptional(More)
Bacillus subtilis is known to produce an abundance of small polypeptides. Several of these have antimicrobial activity and others are pheromones or extracellular factors that affect internal signal transduction systems. The completion of the B. subtilis genomic nucleotide sequence has revealed 345 small polypeptide open-reading frames (of 85 codons or(More)
Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism(More)
The nucleotide sequence of the 20,535 base pairs of the 5' end of the srfA operon, containing the region required for competence development, was determined. This included the srfA promoter region, the first open reading frame, srfAA, encoding surfactin synthetase I and part of the second open reading frame, srfAB, encoding surfactin synthetase II. Three(More)
The Spx protein of Bacillus subtilis represses activator-stimulated transcription by interacting with the C-terminal domain of RNA polymerase (RNAP) alpha subunit. Its concentration increases in cells lacking the ATP-dependent protease, ClpXP, resulting in severe effects on growth and developmental processes. Microarray analysis was undertaken to identify(More)
The complete primary and three-dimensional solution structures of subtilosin A (1), a bacteriocin from Bacillus subtilis, were determined by multidimensional NMR studies on peptide produced using isotopically labeled [(13)C,(15)N]medium derived from Anabaena sp. grown on sodium [(13)C]bicarbonate and [(15)N]nitrate. Additional samples of 1 were also(More)