Peter Westhoff

Learn More
Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information.(More)
The conversion of light to chemical energy by the process of photosynthesis is localized to the thylakoid membrane network in plant chloroplasts. Although several pathways have been described that target proteins into and across the thylakoids, little is known about the origin of this membrane system or how the lipid backbone of the thylakoids is(More)
C4 plants are known to be of polyphyletic origin and to have evolved independently several times during the evolution of angiosperms. This implies that the C4 isoform of phosphoenolpyruvate carboxylase (PEPC) originated from a nonphotosynthetic PEPC gene that was already present in the C3 ancestral species. To meet the special requirements of the C4(More)
To understand the regulatory mechanisms underlying the biogenesis of photosystem II (PSII) we have characterized the nuclear mutant hcf136 of Arabidopsis thaliana and isolated the affected gene. The mutant is devoid of any photosystem II activity, and none of the nuclear- and plastome-encoded subunits of this photosystem accumulate to significant levels.(More)
C(4) photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression(More)
The high-chlorophyll fluorescence photosynthesis mutant hcf109 of Arabidopsis was characterized in detail to gain insights into the regulatory mechanism of RNA processing in higher plants. By using electron transport, chlorophyll fluorescence, and immunoblot studies, we assigned the mutational lesion to photosystems I and II and the plastid NAD(P)H(More)
To understand the functional significance of RNA processing for the expression of plastome-encoded photosynthesis genes, we investigated the nuclear mutation hcf107 of Arabidopsis. The mutation is represented by two alleles, both of which lead to a defective photosystem II (PSII). In vivo protein labeling, in vitro phosphorylation, and immunoblot(More)
Thirty-four recessive photosynthetic mutants of the high-chlorophyll-fluorescence (hcf) phenotype have been isolated by screening 7700 M2 progenies of ethyl methane sulfonate-treated seeds ofArabidopsis thaliana. Most of the mutants isolated were found to be seedlinglethal, but could be grown on sucrose-supplemented media. Chlorophyll (Chl) fluorescence(More)
C4 phosphoenolpyruvate carboxylases have evolved from ancestral C3 isoforms during the evolution of angiosperms and gained distinct kinetic and regulatory properties compared with the C3 isozymes. To identify amino acid residues and/or domains responsible for these C4-specific properties the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia (C4) was(More)
Selective pressure exerted by a massive decline in atmospheric CO(2) levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C(4) photosynthesis. C(4) species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution(More)