Learn More
In the developing embryo and fetus, endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS) like hydroxyl radicals may adversely alter development by oxidatively damaging cellular lipids, proteins and DNA, and/or by altering signal transduction. The postnatal consequences may include an array of birth defects (teratogenesis), postnatal(More)
The teratogenicity of many xenobiotics is thought to depend at least in part upon their bioactivation by embryonic cytochromes P450, prostaglandin H synthase (PHS) and lipoxygenases (LPOs) to electrophilic and/or free radical reactive intermediates that covalently bind to or oxidize cellular macromolecules such as DNA, protein and lipid, resulting in in(More)
The primary recognized health risk from common deficiencies in glucose-6-phosphate dehydrogenase (G6PD), a cytoprotective enzyme for oxidative stress, is red blood cell hemolysis. Here we show that litters from untreated pregnant mutant mice with a hereditary G6PD deficiency had increased prenatal (fetal resorptions) and postnatal death. When treated with(More)
The sedative drug thalidomide ([+]-alpha-phthalimidoglutarimide), once abandoned for causing birth defects in humans, has found new therapeutic license in leprosy and other diseases, with renewed teratological consequences. Although the mechanism of teratogenesis and determinants of risk remain unclear, related teratogenic xenobiotics are bioactivated by(More)
Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation(More)
A mouse embryo culture model was used to determine whether embryonic prostaglandin H synthase (PHS)-catalyzed bioactivation and resultant oxidative damage to embryonic protein and DNA may constitute a molecular mechanism mediating phenytoin and benzo[a]pyrene teratogenesis. Embryos were explanted from CD-1 mouse dams on gestational day 9.5 (vaginal plug =(More)
Gulfwatch, established in 1991, is an international contaminant monitoring program in which the blue mussel, Mytilus edulis, is used as an indicator of the level and extent of contamination in the Gulf of Maine. Since 1991, trace metals, PAHs, PCBs, and OC pesticides have been measured in mussel tissues at 56 sites. The distribution of most metals was(More)
A murine embryo culture model was used to investigate phenytoin-initiated embryonic DNA oxidation and dysmorphogenesis and to determine the embryoprotective potential of superoxide dismutase and catalase, which detoxify reactive oxygen species. Gestational day 9.5 CD-1 embryos were cultured for up to 24 hr at 37 degrees in medium containing phenytoin (20(More)
UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation and elimination of putative tobacco carcinogens such as benzo[a]pyrene (B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which may reduce competing bioactivation and toxicity. B[a]P-initiated cytotoxicity and micronucleus formation, believed to reflect carcinogenic initiation,(More)
Oxidative stress and reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)), which is detoxified by catalase, are implicated in fetal death and birth defects. However, embryonic levels of catalase are only ∼ 5% of adult activity, and its protective role is not understood completely. Herein, we used mutant catalase-deficient mice [acatalasemic(More)