Peter W. Zandstra

Learn More
Stem cell fate is influenced by a number of factors and interactions that require robust control for safe and effective regeneration of functional tissue. Coordinated interactions with soluble factors, other cells, and extracellular matrices define a local biochemical and mechanical niche with complex and dynamic regulation that stem cells sense.(More)
Transforming growth factor-beta (TGFbeta) family members regulate many developmental and pathological events through Smad transcriptional modulators. How nuclear accumulation of Smad is coupled to the transcriptional machinery is poorly understood. Here we demonstrate that in response to TGFbeta stimulation the transcriptional regulator TAZ binds(More)
BACKGROUND Human embryonic stem cells (hESC) should enable novel insights into early human development and provide a renewable source of cells for regenerative medicine. However, because the three-dimensional hESC aggregates [embryoid bodies (hEB)] typically employed to reveal hESC developmental potential are heterogeneous and exhibit disorganized(More)
Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1(More)
Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate. This study demonstrates that the rate and trajectory of hESC differentiation can be controlled by engineering hESC niche properties. Niche size and composition regulate the balance between(More)
To better understand endogenous parameters that influence pluripotent cell differentiation we used human embryonic stem cells (hESCs) as a model system. We demonstrate that differentiation trajectories in aggregate (embryoid body [EB])-induced differentiation, a common approach to mimic some of the spatial and temporal aspects of in vivo development, are(More)
Stem cell fate is governed by the integration of intrinsic and extrinsic positive and negative signals upon inherent transcriptional networks. To identify novel embryonic stem cell (ESC) regulators and assemble transcriptional networks controlling ESC fate, we performed temporal expression microarray analyses of ESCs after the initiation of commitment and(More)
Clinical hematopoietic transplantation outcomes are strongly correlated with the numbers of cells infused. Anticipated novel therapeutic implementations of hematopoietic stem cells (HSCs) and their derivatives further increase interest in strategies to expand HSCs ex vivo. A fundamental limitation in all HSC-driven culture systems is the rapid generation of(More)
A high proportion of the CD34+CD38- cells in normal human marrow are defined as long-term culture-initiating cells (LTC-IC) because they can proliferate and differentiate when co-cultured with cytokine-producing stromal feeder layers. In contrast, very few CD34+CD38- cells will divide in cytokine-containing methylcellulose and thus are not classifiable as(More)
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring(More)