Peter W Scherer

Learn More
Human sniffing behavior usually involves bouts of short, high flow rate inhalation (>300 ml/s through each nostril) with mostly turbulent airflow. This has often been characterized as a factor enabling higher amounts of odorant to deposit onto olfactory mucosa than for laminar airflow and thereby aid in olfactory detection. Using computational fluid(More)
Recent studies that have compared CT or MRI images of an individual's nasal anatomy and measures of their olfactory sensitivity have found a correlation between specific anatomical areas and performance on olfactory assessments. Using computational fluid dynamics (CFD) techniques, we have developed a method to quickly (<few days) convert nasal CT scans from(More)
Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model of the right nasal cavity of the Sprague-Dawley rat based on(More)
An anatomically accurate, x20 enlarged scale model of a healthy right human adult nasal cavity was constructed from computerized axial tomography scans for the study of nasal airflow patterns. Detailed velocity profiles for inspiratory and expiratory flow through the model and turbulence intensity were measured with a hot-film anemometer probe with 1 mm(More)
The transport and uptake of inspired odorant molecules in the human nasal cavity were determined using an anatomically correct three-dimensional finite element model. The steady-state equations of motion and continuity were first solved to determine laminar flow patterns of odorous air at quiet breathing flow rates. The air stream entering the ventral tip(More)
An anatomically accurate 3-dimensional numerical model of the right rat nasal cavity was developed and used to compute low, medium, and high flow rate inspiratory and expiratory mucosal odorant uptake (imposed patterning) for 3 odorants with different mucus solubilities. The computed surface mass flux distributions were compared with anatomic receptor gene(More)
A theoretical model of olfaction involving all the major mechanisms in the mass transport of odorant molecules from inspired air to the olfactory receptors is developed. The mechanisms included are: (i) convective bulk flow of odorant molecules to the olfactory region of the nasal cavity by inhaled air, (ii) lateral transport of odorant molecules from the(More)
An anatomically correct finite element mesh of the right human nasal cavity was constructed from CAT scans of a healthy adult nose. The steady-state Navier-Stokes and continuity equations were solved numerically to determine the laminar airflow patterns in the nasal cavity at quiet breathing flow rates. In the main nasal passages, the highest inspiratory(More)
A steady-state, one-dimensional theoretical model of human respiratory heat and water vapor transport is developed. Local mass transfer coefficients measured in a cast replica of the upper respiratory tract are incorporated into the model along with heat transfer coefficients determined from the Chilton-Colburn analogy and from data in the literature. The(More)
The regulation of local heat and water vapor losses along the respiratory tract is examined based on a theoretical model of respiratory air conditioning and physiological data. The theoretical model is a quasi-steady one-dimensional model descriptive of the localized process of heat and water transport within the airways. During nasal breathing the model is(More)