Peter W. G. Sale

Learn More
Understanding the mechanism of how phosphorus (P) regulates the response of legumes to elevated CO2 (eCO2) is important for developing P management strategies to cope with increasing atmospheric CO2 concentration. This study aimed to explore this mechanism by investigating interactive effects of CO2 and P supply on root morphology, nodulation and soil P(More)
The efficient management of phosphorus (P) in cropping systems remains a challenge due to climate change. We tested how plant species access P pools in soils of varying P status (Olsen-P 3.2–17.6 mg kg−1), under elevated atmosphere CO2 (eCO2). Chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) plants were grown in rhizo-boxes containing Vertosol(More)
Maintaining nutrient supply, including phosphorus (P), is critical to ensure the adaptation of cropping systems to future elevated CO2 (eCO2) environments. There is much speculation about the role of sparingly soluble sources to supply plants with P so we tested the hypothesis that eCO2 increases plant’s ability to utilise P from sparingly soluble sources(More)
This study used two field trials with 5 and 34 years of liming histories, respectively, and aimed to elucidate the long-term effect of liming on soil organic C (SOC) in acid soils. It was hypothesized that long-term liming would increase SOC concentration, macro-aggregate stability and SOC concentration within aggregates. Surface soils (0–10 cm) were(More)
Lime application is the most common method to improve crop production in acid soils and has been shown to change soil organic C content. However, the impact of liming history on the priming effect on soil organic C is not well understood. This study examined the effect of liming history on C priming in response to the addition of crop residues of different(More)
Soil amendments are often added to polluted soils to increase phytoremediation efficiency. Here we investigated the potential of a range of organic amendments for phytoextraction of heavy metals in a contaminated sediment. Two experiments compared adsorption and phytoextraction of heavy metals by a Cd-hyperaccumulator Carpobrotus rossii grown in the(More)
  • 1