Learn More
Intrinsically unstructured/disordered proteins and domains (IUPs) lack a well-defined three-dimensional structure under native conditions. The IUPred server presents a novel algorithm for predicting such regions from amino acid sequences by estimating their total pairwise interresidue interaction energy, based on the assumption that IUP sequences do not(More)
The recent suggestion that the classical structure-function paradigm should be extended to proteins and protein domains whose native and functional state is intrinsically unstructured has received a great deal of support. There is ample evidence that the unstructured state, common to all living organisms, is essential for basic cellular functions; thus it(More)
The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one(More)
The structural stability of a protein requires a large number of interresidue interactions. The energetic contribution of these can be approximated by low-resolution force fields extracted from known structures, based on observed amino acid pairing frequencies. The summation of such energies, however, cannot be carried out for proteins whose structure is(More)
ERD10 and ERD14 (for early response to dehydration) proteins are members of the dehydrin family that accumulate in response to abiotic environmental stresses, such as high salinity, drought, and low temperature, in Arabidopsis (Arabidopsis thaliana). Whereas these proteins protect cells against the consequences of dehydration, the exact mode(s) of their(More)
The notion that all protein functions are determined through macromolecular interactions is the driving force behind current efforts that aim to solve the structures of all cellular complexes. Recent findings, however, demonstrate a significant amount of structural disorder or polymorphism in protein complexes, a phenomenon that has been largely overlooked(More)
Chaperones are highly sophisticated protein machines that assist the folding of RNA molecules or other proteins. Their function is generally thought to require a fine-tuned and highly conserved structure: despite the recent recognition of the widespread occurrence of structural disorder in the proteome, this structural trait has never been generally(More)
  • Peter Tompa
  • 2003
The proportion of the genome encoding intrinsically unstructured proteins increases with the complexity of organisms, which demands specific mechanism(s) for generating novel genetic material of this sort. Here it is suggested that one such mechanism is the expansion of internal repeat regions, i.e., coding micro- and minisatellites. An analysis of 126(More)
Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey(More)
Intrinsically disordered proteins (IDPs) are widespread in eukaryotes and fulfill important functions associated with signaling and regulation. Recent evidence points to a special and thus largely disrespected functional capacity of IDPs--that they can assist the folding of other proteins and prevent their aggregation, i.e., that they can act as chaperones.(More)