Learn More
Intrinsically unstructured/disordered proteins and domains (IUPs) lack a well-defined three-dimensional structure under native conditions. The IUPred server presents a novel algorithm for predicting such regions from amino acid sequences by estimating their total pairwise interresidue interaction energy, based on the assumption that IUP sequences do not(More)
The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one(More)
Intrinsically unstructured proteins (IUPs) are common in various proteomes and occupy a unique structural and functional niche in which function is directly linked to structural disorder. The evidence that these proteins exist without a well-defined folded structure in vitro is compelling, and justifies considering them a separate class within the protein(More)
MOTIVATION The dynamic nature of protein interaction networks requires fast and transient molecular switches. The underlying recognition motifs (linear motifs, LMs) are usually short and evolutionarily variable segments, which in several cases, such as phosphorylation sites or SH3-binding regions, fall into locally disordered regions. We probed the(More)
BACKGROUND Sequencing the genomes of the first few eukaryotes created the impression that gene number shows no correlation with organism complexity, often referred to as the G-value paradox. Several attempts have previously been made to resolve this paradox, citing multifunctionality of proteins, alternative splicing, microRNAs or non-coding DNA. As(More)
Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural(More)
Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate(More)
Chaperones are highly sophisticated protein machines that assist the folding of RNA molecules or other proteins. Their function is generally thought to require a fine-tuned and highly conserved structure: despite the recent recognition of the widespread occurrence of structural disorder in the proteome, this structural trait has never been generally(More)
A basic mechanism by which individual proteins can increase network complexity is moonlighting, whereby a given protein fulfils more than one function. Traditionally, this phenomenon is attributed to separate binding surfaces of globular, folded proteins but we suggest that intrinsically unstructured proteins (IUPs) might provide radically different(More)
Intrinsically unstructured proteins (IUPs) are devoid of extensive structural order but often display signs of local and limited residual structure. To explain their effective functioning, we reasoned that such residual structure can be crucial in their interactions with their structured partner(s) in a way that preformed structural elements presage their(More)