Learn More
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation(More)
An automated coordinate-based system to retrieve brain labels from the 1988 Talairach Atlas, called the Talairach Daemon (TD), was previously introduced [Lancaster et al., 1997]. In the present study, the TD system and its 3-D database of labels for the 1988 Talairach atlas were tested for labeling of functional activation foci. TD system labels were(More)
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm(More)
Activation likelihood estimation (ALE) has greatly advanced voxel-based meta-analysis research in the field of functional neuroimaging. We present two improvements to the ALE method. First, we evaluate the feasibility of two techniques for correcting for multiple comparisons: the single threshold test and a procedure that controls the false discovery rate(More)
OBJECTIVE Theories of human behavior from Plato to Freud have repeatedly emphasized links between emotion and reason, a relationship now commonly attributed to pathways connecting phylogenetically "old" and "new" brain regions. Expanding on this theory, this study examined functional interactions between specific limbic and neocortical regions accompanying(More)
Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital form, we embarked upon a program in 1992 to develop a four-dimensional probabilistic atlas and reference system for the human brain. Through an International Consortium for Brain Mapping (ICBM) a dataset is being collected that includes 7000 subjects(More)
Practice of a novel task leads to improved performance. The brain mechanisms associated with practice-induced improvement in performance are largely unknown. To address this question we have examined the functional anatomy of the human brain with positron emission tomography (PET) during the naive and practiced performance of a simple verbal response(More)
Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5(More)
The use of positron emission tomography to measure regional changes in average blood flow during processing of individual auditory and visual words provides support for multiple, parallel routes between localized sensory-specific, phonological, articulatory and semantic-coding areas.