Learn More
cAMP/cAMP-dependent protein kinase (PKA) signaling pathway has been recently proposed to participate in both the late phase of long term potentiation in the hippocampus and in the late, protein synthesis-dependent phase of memory formation. Here we report that a late memory consolidation phase of an inhibitory avoidance learning is regulated by an(More)
The hippocampus and amygdala, the entorhinal cortex and the parietal cortex participate, in that sequence, both in the formation and in the expression of memory for a step-down inhibitory avoidance task in rats. Bilateral infusion of AP5 or muscimol caused retrograde amnesia when given 0 min after training into both hippocampus and amygdala, when given or(More)
Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), which is thought to be a retrograde messenger in long-term potentiation (LTP), enhances glutamate release and LTP through an action on presynaptic nerve endings. The PAF antagonist BN 52021 blocks CA1 LTP in hippocampal slices, and, when infused into rat dorsal hippocampus(More)
Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or in the amygdala were trained in one-trial step-down inhibitory (passive) avoidance using a 0.4 mA footshock. At various times after training (0, 1.5, 3, 6 or 9 h for animals implanted in the hippocampus; 0 or 3 h for those implanted in the amygdala), they received(More)
A total of 182 young adult male Wistar rats were bilaterally implanted with cannulae into the CA1 region of the dorsal hippocampus and into the amygdaloid nucleus, the entorhinal cortex, and the posterior parietal cortex. After recovery, the animals were trained in a step-down inhibitory avoidance task. At various times after training (0, 30, 60 or 90 min)(More)
Cyclic GMP (cGMP) and cyclic AMP (cAMP) have been proposed to participate in the early and late stages of long-term potentiation (LTP), respectively. Here we report on the effect of post-training intrahippocampal infusion of membrane-permeable analogues of these cyclic nucleotides on the consolidation of inhibitory avoidance learning in rats and on the(More)
Nitric oxide (NO) has been proposed to be involved in the induction of long-term potentiation (LTP) and in other processes. When coupled with weak tetanic stimulation, NO produces a long-term synaptic enhancement on its own. N-Nitroarginine (NO-Arg) inhibits NO-synthase, the enzyme that produces NO, and blocks LTP in hippocampal slices. We investigated the(More)
Rats were bilaterally implanted with cannulae in the entorhinal cortex, amygdala, and hippocampus; after recovery, they were trained in a step-down inhibitory avoidance task and tested for retention 24 h later. Muscimol (0.03 microgram) or D-amino-5-phosphonovalerate (5.0 micrograms) infused in the entorhinal cortex 20 min prior to training inhibited the(More)
We investigated the effect of a bilateral post-training intracerebral infusion of KN62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaM-II), on memory. This enzyme plays a crucial role in the early phases of long-term potentiation. Male Wistar rats were implanted bilaterally with cannulae aimed at the CA1 region of the dorsal(More)
Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 micrograms/side), SCH23390 (0.5(More)