Peter Ricci Pellegrino

Learn More
The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result(More)
A hallmark of chronic heart failure (CHF) is an increased sympathetic tone resulting in autonomic imbalance. Renal denervation (DNx) in CHF patients has resulted in symptomatic improvement, but the protective mechanisms remain unclear. We hypothesized in CHF, unilateral renal DNx would improve cardiac autonomic balance. The present study used conscious,(More)
Elevated sympathetic tone and activation of the renin-angiotensin system are pathophysiologic hallmarks of hypertension, and the interactions between these systems are particularly deleterious. The importance of Rho kinase as a mediator of the effects of angiotensin-II (AngII) in the periphery is clear, but the role of Rho kinase in sympathoexcitation(More)
Heart rate variability (HRV) is a function of cardiac autonomic tone that is widely used in both clinical and animal studies. In preclinical studies, HRV measures are frequently derived using the arterial pulse waveform from an implanted pressure telemetry device, termed pulse rate variability (PRV), instead of the electrocardiogram signal in accordance(More)
The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work,(More)
TO THE EDITOR: We read with great interest the recent work by Martelli et al. (6), published in American Journal of Physiology-Heart and Circulatory Physiology, that describes experiments in conscious sheep in which cardiac sympathetic nerve activity (CSNA), heart rate variability (HRV), and baroreflex sensitivity (BRS) were measured. CSNA did not correlate(More)
Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either(More)
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating(More)
  • 1