Learn More
We demonstrate that the immediate early 175K protein (IE175K) of herpes simplex virus type 1 binds to the cap site of the latency-associated promoter (LAP) in an unusual manner. The complex formed on the LAP cap site was significantly larger than that formed on the IE175K cap site and the requirements for binding were qualitatively distinct with respect to(More)
We show that the HSV-1 structural protein VP22 has the remarkable property of intercellular transport, which is so efficient that following expression in a subpopulation the protein spreads to every cell in a monolayer, where it concentrates in the nucleus and binds chromatin. VP22 movement was observed both after delivery of DNA by transfection or(More)
The Herpes Simplex Virus 1 (HSV-1)-encoded ICP22 protein plays an important role in viral infection and affects expression of host cell genes. ICP22 is known to reduce the global level of serine (Ser)2 phosphorylation of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 heptapeptide repeats comprising the carboxy-terminal domain (CTD) of the large subunit of RNA polymerase(More)
In addition to transmission involving extracellular free particles, a generally accepted model of virus propagation is one wherein virus replicates in one cell, producing infectious particles that transmit to the next cell via cell junctions or induced polarized contacts. This mechanism of spread is especially important in the presence of neutralizing(More)
CREB‑H, an endoplasmic reticulum-anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87-S90 with homology to DSG-type phosphodegrons. We show that this region is(More)
The role of titanium dioxide (TiO2) as a means to engender enhanced stability into calcium phosphate (Ca-P) coatings has been well recognised. Several different methods have been used to create such Ca-P/TiO2 hybrid layers on a range of substrates. This paper reports the properties of a Ca-P/TiO2 system created by the sputter deposition of hydroxyapatite(More)
We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no(More)
UNLABELLED Viruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report(More)
Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation(More)