Learn More
Unitary event analysis is a new method for detecting episodes of synchronized neural activity (Riehle, Grün, Diesmann, & Aertsen, 1997). It detects time intervals that contain coincident firing at higher rates than would be expected if the neurons fired as independent inhomogeneous Poisson processes; all coincidences in such intervals are called unitary(More)
Voltage-gated ion channels in neuronal membranes fluctuate randomly between different conformational states due to thermal agitation. Fluctuations between conducting and nonconducting states give rise to noisy membrane currents and subthreshold voltage fluctuations and may contribute to variability in spike timing. Here we study subthreshold voltage(More)
One fifth of neurons in the medial-temporal lobe of human epilepsy patients respond selectively to categories of images, such as faces or cars. Here we show that responses of hippocampal neurons are rapidly modified as subjects alternate (over 60 sec) between two tasks (1) identifying images from a category, or (2) playing a simple video game superimposed(More)
A potentially powerful information processing strategy in the brain is to take advantage of the temporal structure of neuronal spike trains. An increase in synchrony within the neural representation of an object or location increases the efficacy of that neural representation at the next synaptic stage in the brain; thus, increasing synchrony is a candidate(More)
Different structures within the medial-temporal lobe likely make distinct contributions to declarative memory. In particular, several current psychological and computational models of memory predict that the hippocampus and parahippocampal regions play different roles in the formation and retrieval of declarative memories [e.g., Norman, K. A., & O'Reilly,(More)
Encoding synaptic inputs as a train of action potentials is a fundamental function of nerve cells. Although spike trains recorded in vivo have been shown to be highly variable, it is unclear whether variability in spike timing represents faithful encoding of temporally varying synaptic inputs or noise inherent in the spike encoding mechanism. It has been(More)
It remains unclear whether the variability of neuronal spike trains in vivo arises due to biological noise sources or represents highly precise encoding of temporally varying synaptic input signals. Determining the variability of spike timing can provide fundamental insights into the nature of strategies used in the brain to represent and transmit(More)
Synchronized neuronal ring has beenreported in many neural systems and may play a role in the representation of sensory stimuli and the modiication of sensory representations by both experience and attention. In this report we describe a boot-strap procedure for computing the statistical signiicance of changes in the degree of synchrony and apply it to(More)
Human intracranial microwire recordings have typically had poor signal-to-noise ratios (SNRs), often below 10 dB. The physiological signal source is a fixed-amplitude one; thus, SNR must be improved by reducing either noise or interference. An understanding of the interference sources, how they are coupled to the recording system, and their relative(More)